www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Geraden und Ebenen" - Orthogonalität Ebene und Gerad
Orthogonalität Ebene und Gerad < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Orthogonalität Ebene und Gerad: Erkläuterung
Status: (Frage) beantwortet Status 
Datum: 14:39 Mo 17.12.2007
Autor: zocca21

Aufgabe
Untersuchen sie ob Gerade x = (-2/0/1) + t *(3/0/-5) zur Ebene E orthogonal ist.
a) E: 2x1 + x2 + 4x3 = 5
b) E: 9x1 + 7x3 =1
c) E: 3x2 = -10
d) 4x1 + 2x2 + 8x3 = -15

Meine Frage ist nun...wie gehe ich dabei vor..

Hätte ich 2 Geraden müsste ich ja schauen ob die beiden Spannvektoren orthogonal sind also schauen ob beide zusammen 0 ergeben.

Wie ist es nun in diesem Fall?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Orthogonalität Ebene und Gerad: Hinweis
Status: (Antwort) fertig Status 
Datum: 14:45 Mo 17.12.2007
Autor: Roadrunner

Hallo zocca!


Ermittle jeweils den Normalenvektor der einzelnen Ebenen. Untersuche dann, ob diese linear abhängig mit dem Richtungsvektor der Geraden ist. In diesem Falle steht die Gerade senkrecht zur Ebene.


Gruß vom
Roadrunner


Bezug
                
Bezug
Orthogonalität Ebene und Gerad: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:49 Mo 17.12.2007
Autor: zocca21

Danke!

Also ich hab dann z.B. bei der a) Normalenvektor n=(2/1/4) und den spannvektor u=(3/0/-5)

Wie überprüf ich da die lineare abhängigkeit?

Vielen Dank

Bezug
                        
Bezug
Orthogonalität Ebene und Gerad: Antwort
Status: (Antwort) fertig Status 
Datum: 15:00 Mo 17.12.2007
Autor: statler

Hallo!

> Also ich hab dann z.B. bei der a) Normalenvektor n=(2/1/4)
> und den spannvektor u=(3/0/-5)

[ok]

> Wie überprüf ich da die lineare abhängigkeit?

Wenn dir dieser Ausdruck nicht geläufig ist, kannst du vielleicht stattdessen prüfen, ob diese beiden Vektoren die gleiche Richtung bestimmen oder ob sie kollinear sind.

Gruß aus HH-Harburg
Dieter

Bezug
                                
Bezug
Orthogonalität Ebene und Gerad: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:38 Mo 17.12.2007
Autor: zocca21

Danke..

Und wie kann ich jetzt konkret an dem Beispiel überprüfen ob beide Vektoren liner abhängig sind? steh ein bisschen auf dem Schlauch..

Gruß

Bezug
                                        
Bezug
Orthogonalität Ebene und Gerad: überprüfen
Status: (Antwort) fertig Status 
Datum: 15:43 Mo 17.12.2007
Autor: Roadrunner

Hallo zocca!


Kannst Du durch eine eindeutige Skalarmultiplikation (= Multiplikation mit einer Zahl) den Normalenvektor in den Richtungsvektor umwandeln?


Gruß vom
Roadrunner


Bezug
                                                
Bezug
Orthogonalität Ebene und Gerad: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:42 Mo 17.12.2007
Autor: zocca21

Also konkreter Fall:

Ich habe Normalenvektor n=(2/1/4) und Spannvektor (3/0/-5)

2*3 + 0 -20 muss 0 ergeben funktioniert nicht, denk ich mal...

Komm da einfach nich weiter zu blöd :(

Bezug
                                                        
Bezug
Orthogonalität Ebene und Gerad: nicht Skalarprodukt
Status: (Antwort) fertig Status 
Datum: 20:48 Mo 17.12.2007
Autor: Roadrunner

Hallo zocca!


Du darfst hier nicht mit dem MBSkalarprodukt vorgehen, sondern sollst überprüfen, ob durch Multiplikation mit einer reellen Zahl der eine Vektor in den anderen überführt werden kann:
[mm] $$s*\vektor{2\\1\\4} [/mm] \ [mm] \overset{?}{=} [/mm] \ [mm] \vektor{3\\0\\-5}$$ [/mm]
Daraus ergibt sich folgendes Gleichungssystem:
[mm] $$\vmat{ 2*s & = & 3 \\ 1*s & = & 0 \\4*s & = & -5}$$ [/mm]
Ergibt sich hieraus eine eindeutige Lösung für $s_$ ?


Gruß vom
Roadrunner


Bezug
                                                                
Bezug
Orthogonalität Ebene und Gerad: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:55 Mo 17.12.2007
Autor: zocca21

Okay alles klar hab es verstanden...dann ist in dem Beispiel also keine orthogonalität erkennbar..

Orthogonal
wäre z.B.
Spannvektor u=(6/3/12) und normalenvektor n=(2/1/4)..
da s in diesem fall 3 wäre...

Vielen Dank

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de