www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Orthonormalbasis
Orthonormalbasis < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Orthonormalbasis: Aufgabenstellung
Status: (Frage) beantwortet Status 
Datum: 17:39 So 28.01.2007
Autor: stofffffel

Aufgabe
Seien [mm] n\ge1 [/mm] und V der [mm] \IR-Vektorraum [/mm] der Polynome vom Grad [mm] \le [/mm] n .
Finde Skalaprodukt in V, sodass Polynome [mm] 1,t,\bruch{t^{2}}{t!},..., \bruch{t^{n}}{n!} [/mm] eine Orthonormalbasis bilden.

Hallo ihr Lieben,
ich bin schon wieder mal auf eure Hilfe angewiesen.
Ich weiss was eine ONB ist nur kann ich leider nichts mit der Aufgabe anfangen und demnach weiss ich auch nicht wie ich dazu ein Skalarprodukt finden kann.
Ist wahrscheinlich alles gar nicht so schwer, aber ich kann mir da grad nichts drunter vorstellen...
Wäre super, wenn mir jemand von euch mit einem kleinen Tipp helfen könnte...

Vielen lieben Dank schon mal

        
Bezug
Orthonormalbasis: Antwort
Status: (Antwort) fertig Status 
Datum: 08:59 Mo 29.01.2007
Autor: angela.h.b.


> Seien [mm]n\ge1[/mm] und V der [mm]\IR-Vektorraum[/mm] der Polynome vom Grad
> [mm]\le[/mm] n .
>  Finde Skalaprodukt in V, sodass Polynome
> [mm]1,t,\bruch{t^{2}}{t!},..., \bruch{t^{n}}{n!}[/mm] eine
> Orthonormalbasis bilden.

>  Ich weiss was eine ONB ist

Hallo,

das ist ja schonmal gut.

Da Deine Basis bzgl. des zu findenden Skalarproduktes [mm] \odot [/mm] eine ONB sein soll, muß ja gelten

[mm] {\bruch{t^n}{n!}\odot \bruch{t^m}{m!}}=\begin{cases} 0, & \mbox{für } n\not=m \mbox{ } \\ 1, & \mbox{für } n=m \mbox{ } \end{cases} [/mm]

Das hat mich nun auf die idee gebracht, ein Skalarprodukt wie folgt zu definieren

[mm] (\summe_{i=0}^{n}a_it^i) \odot (\summe_{i=0}^{n}b_it^i):=\summe_{i=0}^{n}a_ib_i(i!)^2 [/mm]

Ob's wirklich funktioniert, habe ich nicht nachgerechnet, aber mir sieht's ganz gut aus.

Um herauszufinden, ob's ein Skalarprodukt ist, müßtest Du nun die Skalarprodukteigenschaften nachweisen.
Falls es keines ist, kann man's vielleicht zurechtbiegen.

Gruß v. Angela

Bezug
                
Bezug
Orthonormalbasis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:14 Di 30.01.2007
Autor: stofffffel

Vielen dank dass du dir immer so viel mühe mit mir gibst...
ich habs auch noch ncih ausgerechnet aba ich werde es jetz dann bei meinen klausurvorbereitungen mal ausprobieren... ;-)

also nochmal vielen vielen dank

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de