www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Orthonormalbasis
Orthonormalbasis < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Orthonormalbasis: Gram-Schmidt
Status: (Frage) beantwortet Status 
Datum: 11:31 Do 17.11.2011
Autor: mwieland

Aufgabe
Gegeben seien die Vektoren

[mm] \vec{v_{1}} [/mm] = (1,2,0,2), [mm] \vec{v_{2}} [/mm] = (-2,1,-1,0), [mm] \vec{v_{3}} [/mm] = (1,-1,1,1)

Berechnen Sie eine Orthonormalbasis vom Untervektorraum U, der von diesen 3 Vektoren aufgespannt wird.

hallo zusammen:

Ich habe das mit Gram-Schmidt gelöst, und komme auf etwas seltsame Ergebnisse:

Ich möchte hier bitte nun den Rechenweg posten, vl findet jemand von euch den fehler:

Als erstes hab ich mal [mm] \vec{v_{1}} [/mm] normiert, das ergibt dann

[mm] \vec{y_{1}} [/mm] = [mm] \bruch{1}{3}*\vektor{1 \\ 2 \\ 0 \\ 2} [/mm]

der zweite schritt in diesem verfahren ist die zerlegung von [mm] \vec{v_{2}} [/mm] in [mm] \lambda [/mm] * [mm] \vec{y_{1}}+\vec{w} [/mm] mit Skalarprodukt [mm] (\vec{y_{1}},\vec{w})=0 [/mm]

hier komme ich für [mm] \lambda [/mm] auf den wert 0,
[mm] \vec{w} [/mm] ist dann [mm] \vec{v_{2}}-0= \vec{v_{2}}, [/mm]

die norm von [mm] \vec{w} [/mm] ist [mm] \bruch{1}{\wurzel{6}}*\vektor{-2 \\ 1 \\ -1 \\ 0} [/mm]

der nächste schritt wäre die zerlegung von [mm] \vec{v_{3}} [/mm] in [mm] \lambda_{1}*\vec{v_{1}}+\lambda_{2}*\vec{v_{2}}+\vec{z} [/mm]

für [mm] \lambda_{1} [/mm] bekomme ich 1, für [mm] \lambda_{2} [/mm] bekomme ich den wert 3

dann krieg ich also für [mm] \vec{z} [/mm] = [mm] \vec{v_{3}}+\lambda_{1}*\vec{y_{1}}+\lambda_{2}*\vec{y_{2}} [/mm] den wert [mm] \bruch{1}{3}*\vektor{20 \\ -14 \\ -6 \\ 1}, [/mm]

[mm] \vec{z} [/mm] normiert wäre dann also [mm] \bruch{1}{3*\wurzel{633}}*\vektor{20 \\ -14 \\ -6 \\ 1} [/mm]

da kann doch wohl was nicht stimmen beim z oder?

dank und lg markus


        
Bezug
Orthonormalbasis: Antwort
Status: (Antwort) fertig Status 
Datum: 11:48 Do 17.11.2011
Autor: donquijote


> Gegeben seien die Vektoren
>  
> [mm]\vec{v_{1}}[/mm] = (1,2,0,2), [mm]\vec{v_{2}}[/mm] = (-2,1,-1,0),
> [mm]\vec{v_{3}}[/mm] = (1,-1,1,1)
>  
> Berechnen Sie eine Orthonormalbasis vom Untervektorraum U,
> der von diesen 3 Vektoren aufgespannt wird.
>  hallo zusammen:
>  
> Ich habe das mit Gram-Schmidt gelöst, und komme auf etwas
> seltsame Ergebnisse:
>  
> Ich möchte hier bitte nun den Rechenweg posten, vl findet
> jemand von euch den fehler:
>  
> Als erstes hab ich mal [mm]\vec{v_{1}}[/mm] normiert, das ergibt
> dann
>  
> [mm]\vec{y_{1}}[/mm] = [mm]\bruch{1}{3}*\vektor{1 \\ 2 \\ 0 \\ 2}[/mm]
>  
> der zweite schritt in diesem verfahren ist die zerlegung
> von [mm]\vec{v_{2}}[/mm] in [mm]\lambda[/mm] * [mm]\vec{y_{1}}+\vec{w}[/mm] mit
> Skalarprodukt [mm](\vec{y_{1}},\vec{w})=0[/mm]
>  
> hier komme ich für [mm]\lambda[/mm] auf den wert 0,
> [mm]\vec{w}[/mm] ist dann [mm]\vec{v_{2}}-0= \vec{v_{2}},[/mm]
>
> die norm von [mm]\vec{w}[/mm] ist [mm]\bruch{1}{\wurzel{6}}*\vektor{-2 \\ 1 \\ -1 \\ 0}[/mm]
>  
> der nächste schritt wäre die zerlegung von [mm]\vec{v_{3}}[/mm] in
> [mm]\lambda_{1}*\vec{v_{1}}+\lambda_{2}*\vec{v_{2}}+\vec{z}[/mm]
>  
> für [mm]\lambda_{1}[/mm] bekomme ich 1, für [mm]\lambda_{2}[/mm] bekomme
> ich den wert 3
>  
> dann krieg ich also für [mm]\vec{z}[/mm] =
> [mm]\vec{v_{3}}+\lambda_{1}*\vec{y_{1}}+\lambda_{2}*\vec{y_{2}}[/mm]
> den wert [mm]\bruch{1}{3}*\vektor{20 \\ -14 \\ -6 \\ 1},[/mm]
>
> [mm]\vec{z}[/mm] normiert wäre dann also
> [mm]\bruch{1}{3*\wurzel{633}}*\vektor{20 \\ -14 \\ -6 \\ 1}[/mm]
>  
> da kann doch wohl was nicht stimmen beim z oder?
>  
> dank und lg markus
>  

Deine Lambdas stimmen nicht. Du brauchst [mm] $\lambda_i=(\vec{v}_3,\vec{y}_i)$ [/mm] für $i=1,2$

Bezug
                
Bezug
Orthonormalbasis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:55 Do 17.11.2011
Autor: mwieland

bei mir im skript steht für lambda 1 -> skalarprodukt von v3 und y1 ergibt 1

lambda2 -> skalarprodukt von v3 und y2 ergibt 3

oder?

Bezug
                        
Bezug
Orthonormalbasis: Antwort
Status: (Antwort) fertig Status 
Datum: 11:58 Do 17.11.2011
Autor: donquijote


> bei mir im skript steht für lambda 1 -> skalarprodukt von
> v3 und y1 ergibt 1
>  
> lambda2 -> skalarprodukt von v3 und y2 ergibt 3
>  
> oder?

[mm] $1=(\vec{v}_3,\vec{v}_1)$, [/mm] du musst aber [mm] y_1 [/mm] statt [mm] v_1 [/mm] nehmen, dh. es fehlt der Normierungsfaktor.
Und die 3 stimmt gar nicht, das rechne nochmal nach. Und auch hier an den Normierungsfaktor denken!

Bezug
                                
Bezug
Orthonormalbasis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:05 Do 17.11.2011
Autor: mwieland

ok, mein fehler war, dass ich versucht habe den normierungsfaktor aus dem skalarprodukt herauszuziehen und einfach v3 um das drittel zu erweitern, speich also (3,-3,3,3) zu nehmen und dann am schluss das drittel wieder miteinfließen zu lassen, aber das geht wohl anscheinend nicht, ich bekomme jetzt für lambda 1 -> 1/3

und für lambda2 -> [mm] \bruch{-4}{\wurzel{6}} [/mm]

das müsste jetzt passen oder?

Bezug
                                        
Bezug
Orthonormalbasis: Antwort
Status: (Antwort) fertig Status 
Datum: 12:39 Do 17.11.2011
Autor: donquijote


> ok, mein fehler war, dass ich versucht habe den
> normierungsfaktor aus dem skalarprodukt herauszuziehen und
> einfach v3 um das drittel zu erweitern, speich also
> (3,-3,3,3) zu nehmen und dann am schluss das drittel wieder
> miteinfließen zu lassen, aber das geht wohl anscheinend
> nicht, ich bekomme jetzt für lambda 1 -> 1/3
>  
> und für lambda2 -> [mm]\bruch{-4}{\wurzel{6}}[/mm]
>  
> das müsste jetzt passen oder?

ja, sieht gut aus

Bezug
                                                
Bezug
Orthonormalbasis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:36 Do 17.11.2011
Autor: mwieland

ich bekomme dann wenn ich mir [mm] \vec{z} [/mm] ausrechne [mm] \bruch{1}{9}*\vektor{20 \\ -17 \\ 3 \\ 7}, [/mm] das dann normiert, also mein [mm] \vec{y_{3}}= \bruch{1}{18*\wurzel{83}}*\vektor{20 \\ -17 \\ 3 \\ 7} [/mm]

gibts das?

vielen vielen dank und lg
mark

Bezug
                                                        
Bezug
Orthonormalbasis: Antwort
Status: (Antwort) fertig Status 
Datum: 13:58 Do 17.11.2011
Autor: donquijote


> ich bekomme dann wenn ich mir [mm]\vec{z}[/mm] ausrechne
> [mm]\bruch{1}{9}*\vektor{20 \\ -17 \\ 3 \\ 7},[/mm] das dann
> normiert, also mein [mm]\vec{y_{3}}= \bruch{1}{18*\wurzel{83}}*\vektor{20 \\ -17 \\ 3 \\ 7}[/mm]
>  
> gibts das?
>  
> vielen vielen dank und lg
>  mark

da steckt noch ein vorzeichenfehler drin (wahrscheinlich beim subtrahieren von [mm] \lambda_2y_2). [/mm]
aber egal wie, ein ganz "glattes" ergebnis kommt nicht raus.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de