www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Orthonormalbasis
Orthonormalbasis < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Orthonormalbasis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:44 Di 14.02.2012
Autor: al3pou

Aufgabe
Geben Sie die Matrix S an, die eine Spiegelung an der x-z-Ebene
beschreibt. Eine Orthonormalbasis [mm] {\vec{u_{1}}, \vec{u_{2}}, \vec{u_{3}}} [/mm] des [mm] \IR^{3} [/mm] aus Eigenvektoren
von S wird gebildet durch [mm] \vec{u_{1}}=?, \vec{u_{2}}=? [/mm] und [mm] \vec{u_{3}}=? [/mm] mit den Eigenwerten
[mm] \lambda_{1} [/mm] =?, [mm] \lambda_{2} [/mm] =? und [mm] \lambda_{3} [/mm] =?


Hallo,

also die Matrix für die Spiegelung müsste

   S = [mm] \pmat{ 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 } [/mm]

sein.
Eine Orthonormalbasis ist doch eine Basis, die eine Raum
aufspannt und alle Vektoren die in aufspannen sind
orthogonal zueinander. Die Eigenvektoren zu der
Diagonalmatrix müssten doch einfach die Einheitsvektoren sein und
die Eigenwerte sind [mm] \lambda_{1,2} [/mm] = 1 [mm] \wedge \lambda_{3} [/mm] =
-1. Sehe ich das richtig? Aber wie berechnet man für andere
Matrizen die keine Diagonalmatrizen sind eine
Orthonormalbasis? Einfach Eigenvektoren ausrechnen und dann
daraus eine neue Matrix machen?

Gruß
al3pou

        
Bezug
Orthonormalbasis: Antwort
Status: (Antwort) fertig Status 
Datum: 11:37 Di 14.02.2012
Autor: fred97


> Geben Sie die Matrix S an, die eine Spiegelung an der
> x-z-Ebene
> beschreibt. Eine Orthonormalbasis [mm]{\vec{u_{1}}, \vec{u_{2}}, \vec{u_{3}}}[/mm]
> des [mm]\IR^{3}[/mm] aus Eigenvektoren
> von S wird gebildet durch [mm]\vec{u_{1}}=?, \vec{u_{2}}=?[/mm] und
> [mm]\vec{u_{3}}=?[/mm] mit den Eigenwerten
> [mm]\lambda_{1}[/mm] =?, [mm]\lambda_{2}[/mm] =? und [mm]\lambda_{3}[/mm] =?
>  
> Hallo,
>  
> also die Matrix für die Spiegelung müsste
>  
> S = [mm]\pmat{ 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 }[/mm]
>  
> sein.

Ja


>  Eine Orthonormalbasis ist doch eine Basis, die eine Raum
> aufspannt und alle Vektoren die in aufspannen sind
> orthogonal zueinander.

......    und normiert.....


Ist V ein endlichdimensionaler euklidischer oder  unitärer Raum mit dem Skalarprodukt <*|*>, so ist eine Teilmenge B von V eine Orthonormalbasis von V, wenn gilt:

1. B ist eine Basis von V

2. <b|b> =1  für jedes b [mm] \in [/mm] B

3. <b,c>=0  für b,c [mm] \in [/mm] B mit b [mm] \ne [/mm] c.


> Die Eigenvektoren zu der
> Diagonalmatrix müssten doch einfach die Einheitsvektoren
> sein und
> die Eigenwerte sind [mm]\lambda_{1,2}[/mm] = 1 [mm]\wedge \lambda_{3}[/mm] =
> -1. Sehe ich das richtig?


Ja

> Aber wie berechnet man für
> andere
> Matrizen die keine Diagonalmatrizen sind eine
> Orthonormalbasis? Einfach Eigenvektoren ausrechnen und dann
> daraus eine neue Matrix machen?

nein. Eine ONB aus Eigenvektoren findest Du nur, wenn die Matrix diagonalisierbar ist.


FRED

>  
> Gruß
>  al3pou


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de