www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Orthonormalbasis bilden
Orthonormalbasis bilden < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Orthonormalbasis bilden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:41 Di 07.07.2009
Autor: itse

Aufgabe
Der Vektor mit den Koordinaten [mm] \left( \bruch{2}{3},\bruch{1}{3},\bruch{2}{3} \right) [/mm] soll zu einer Orthonormalbasis ergänzt werden. Wie lauten die restlichen Vektoren? Gibt es mehrere Lösungen? Wie viele?

Hallo Zusammen,

damit ich eine Orthonormalbasis erhalte muss folgendes erfüllt sein:

1. Vektoren senkrecht zueinander
2. Vektoren haben den Betrag 1

Nun ist doch nicht gefordert eine Orthonormalbasis des [mm] \IR^3 [/mm] anzugeben, dann müssten es doch 3 Vektoren sein?

Wenn ich nur einen zweiten Vektor bestimme, wäre dies doch dann eine Orthonormalbasis eines Untervektorraumes des [mm] \IR^3? [/mm]

Der angegebene Vektor ist schon normiert somit, benötige ich noch einen zweiten Vektor der senkrecht (Skalarprodukt = 0) dazu steht.

[mm] \begin{pmatrix} \bruch{2}{3} \\ \bruch{1}{3} \\ \bruch{2}{3} \end{pmatrix} \cdot{} \begin{pmatrix} x \\ y \\ z \end{pmatrix} [/mm]   = 0

-> [mm] \bruch{2}{3}x+\bruch{1}{3}y+\bruch{2}{3}z=0 [/mm]

Dies ist zum Beispiel für folgende Werte erfüllt:

x = 0, y = 2, z = -1
x = 1, y = 0, z =  0
x = 3, y = 0, z = -3

Es gibt unendlich viele Lösungen dafür. Diese müssten im Anschluss noch normiert werden, z.B. für x = 0, y = 2, z = -1:

[mm] |$\vec [/mm] v$| = [mm] \wurzel{0²+2²+1²} [/mm] = [mm] \wurzel{5} [/mm]

[mm] \vec v_0 [/mm] = [mm] \bruch{1}{\wurzel{5}} \cdot{} \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix} [/mm]


Wie soll man denn die Anzahl der Lösungen angeben?

Gruß
itse

        
Bezug
Orthonormalbasis bilden: Antwort
Status: (Antwort) fertig Status 
Datum: 10:16 Di 07.07.2009
Autor: angela.h.b.


> Der Vektor mit den Koordinaten [mm]\left( \bruch{2}{3},\bruch{1}{3},\bruch{2}{3} \right)[/mm]
> soll zu einer Orthonormalbasis ergänzt werden.

Hallo,

sinnvollerweise sollte hier schon angegeben sein, wovon eine ONB gesucht ist.
Ich denke: vom  [mm] \IR^3. [/mm]

Wie lauten

> die restlichen Vektoren? Gibt es mehrere Lösungen? Wie
> viele?
>  Hallo Zusammen,
>  
> damit ich eine Orthonormalbasis erhalte muss folgendes
> erfüllt sein:
>  
> 1. Vektoren senkrecht zueinander
>  2. Vektoren haben den Betrag 1

Ja.

>  
> Nun ist doch nicht gefordert eine Orthonormalbasis des
> [mm]\IR^3[/mm] anzugeben, dann müssten es doch 3 Vektoren sein?

Ja. dann muß man halt mit 2 Vektoren ergänzen.


> Wenn ich nur einen zweiten Vektor bestimme, wäre dies doch
> dann eine Orthonormalbasis eines Untervektorraumes des
> [mm]\IR^3?[/mm]

Ja. Die ONB einer Ebene durch den Ursprung.

>  
> Der angegebene Vektor ist schon normiert somit, benötige
> ich noch einen zweiten Vektor der senkrecht (Skalarprodukt
> = 0) dazu steht.

Genau.

>  
> [mm]\begin{pmatrix} \bruch{2}{3} \\ \bruch{1}{3} \\ \bruch{2}{3} \end{pmatrix} \cdot{} \begin{pmatrix} x \\ y \\ z \end{pmatrix}[/mm]
>   = 0
>  
> -> [mm]\bruch{2}{3}x+\bruch{1}{3}y+\bruch{2}{3}z=0[/mm]
>  
> Dies ist zum Beispiel für folgende Werte erfüllt:
>  
> x = 0, y = 2, z = -1
>  x = 1, y = 0, z =  0

Der funktioniert nicht.

>  x = 3, y = 0, z = -3
>  
> Es gibt unendlich viele Lösungen dafür.

Ja.


> Diese müssten im
> Anschluss noch normiert werden,

Richtig.

Wenn Du nun eine ONB  des [mm] \IR^3 [/mm] suchst, brauchst Du einen weiteren Einheitsvektor, der auf den beiden senkrecht steht. Du findest ihn z.B. mit dem Kreuzprodukt.


>  z.B. für x = 0, y = 2, z =
> -1:
>  
> |[mm]\vec v[/mm]| = [mm]\wurzel{0²+2²+1²}[/mm] = [mm]\wurzel{5}[/mm]
>  
> [mm]\vec v_0[/mm] = [mm]\bruch{1}{\wurzel{5}} \cdot{} \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}[/mm]
>  
>
> Wie soll man denn die Anzahl der Lösungen angeben?

Es gibt unendlich viele.

Gruß v. Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de