www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Orthonormalbasis im R4
Orthonormalbasis im R4 < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Orthonormalbasis im R4: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:46 Mo 16.04.2007
Autor: jura28

Aufgabe
Ergänzen Sie die Menge {1/2 (1,1,1,1) , 1/2 (-1,1,-1,1)} zu einer Orthonormalbasis des R4.

Hallo!
Zum Anfang erstmal:Die beiden Vektoren oben sind transponiert wusste nur nicht wie ich ein T nach oben stellen kann.
Damit es eine Orthonormalbasis des R4 ist muss ich doch noch zwei weitere Vektoren finden oder?
Also wenn ich mich nicht verguckt habe, habe ich den einen schon gefunden. Das müsste der Vektor [mm] 1/\wurzel{3} \vektor{0 \\ 1\\0\\-1} [/mm]  sein.
Aber wie komme ich da jetzt auf den nächsten, denn ich seh da keinen mehr. Gibt es da irgendwie einen Rechenweg?
Wäre sehr nett wenn mir da jemand helfen könnte!
Danke
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Orthonormalbasis im R4: Antwort
Status: (Antwort) fertig Status 
Datum: 08:26 Di 17.04.2007
Autor: angela.h.b.


>
>  Also wenn ich mich nicht verguckt habe, habe ich den einen
> schon gefunden. Das müsste der Vektor [mm]1/\wurzel{3} \vektor{0 \\ 1\\0\\-1}[/mm]
>  sein.
>  Aber wie komme ich da jetzt auf den nächsten, denn ich seh
> da keinen mehr. Gibt es da irgendwie einen Rechenweg?

Hallo,

[mm] 1/\wurzel{2} \vektor{0 \\ 1\\0\\-1} [/mm] muß es heißen.

Einen weiteren passenden Vektor siehst Du, wenn Du Dich auf die erste und dritte Komponente konzentrierst,  [mm] \vektor{? \\ 0\\??\\0}. [/mm]


Ansonsten: in Fällen, wo das nicht so einfach zu sehen ist, kann man die vorgegebenen Vektoren zunächst durch irgendwelche Vektoren zu einer Basis ergänzen und dann das Gram-Schmidtsche Orthogonalisierungsverfahren anwenden.

Gruß v. Angela



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de