www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Gleichungssysteme" - Orthonormalbasis prüfen
Orthonormalbasis prüfen < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Orthonormalbasis prüfen: Fehler: Lineare Unabhängigkeit
Status: (Frage) beantwortet Status 
Datum: 14:37 Mi 03.12.2014
Autor: asg

Aufgabe
Es seien [mm] b_1 [/mm] := [mm] \frac{1}{3}\vektor{2 \\ 2 \\ -1}, b_2 [/mm] := [mm] \frac{1}{3}\vektor{-1 \\ 2 \\ 2} [/mm] und [mm] b_3 [/mm] := [mm] \frac{1}{3}\vektor{2 \\ -1 \\ 2} [/mm]

a) Zeigen Sie: [mm] \mathfrak{B} [/mm] := [mm] \{\vec{b_1}, \vec{b_2}, \vec{b_3}\} [/mm] ist eine Orthonormalbasis des [mm] \IR^3 [/mm] und die Matrix B:= [mm] (\vec{b_1} \vec{b_2} \vec{b_3}) \in \IR^{3x3} [/mm] mit den Spalten [mm] \vec{b_i} [/mm] ist orthogonal.

Hallo zusammen,

bei der Lösung des ersten Teils (Orthonormalbasis) zeige ich folgendes:

1. [mm] \vec{b_1}, \vec{b_2}, \vec{b_3}\ [/mm] sind Einheitsvektoren
Das klappt.

2. Alles drei Vektoren sind paarweise orthogonal.
Das klappt auch.

3. Zeigen der linearen Unabhängigkeit der Vektoren.

Hierzu habe ich das Gleichungssystem aufgestellt, aber irgendwo mache ich einen Fehler, so dass ich für für alle Koeffizienten 0 bekomme und komme nicht weiter ...

Also meine Lösung:

[mm] \lambda_1 \cdot \vec{b_1} [/mm] + [mm] \lambda_1 \cdot \vec{b_1} [/mm] + [mm] \lambda_1 \cdot \vec{b_1} [/mm] = [mm] \vec{0} [/mm]

[mm] \frac{1}{3}\lambda_1 \vektor{2 \\ 2 \\ -1} [/mm] + [mm] \frac{1}{3}\lambda_2 \vektor{-1 \\ 2 \\ 2} [/mm] + [mm] \frac{1}{3}\lambda_3 \vektor{2 \\ -1 \\ 2} =\vektor{0 \\ 0 \\ 0} [/mm]

Ausmultiplizieren:

I    [mm] \frac{2}{3}\lambda_1 [/mm] - [mm] \frac{1}{3}\lambda_2 [/mm] + [mm] \frac{2}{3}\lambda_3 [/mm] = 0

II   [mm] \frac{2}{3}\lambda_1 [/mm] + [mm] \frac{2}{3}\lambda_2 [/mm] - [mm] \frac{1}{3}\lambda_3 [/mm] = 0

III [mm] -\frac{1}{3}\lambda_1 [/mm] + [mm] \frac{2}{3}\lambda_2 [/mm] + [mm] \frac{2}{3}\lambda_3 [/mm] = 0


I - II   [mm] -\frac{3}{3}\lambda_2 [/mm] + [mm] \frac{3}{3}\lambda_3 [/mm] = 0

          [mm] -\lambda_2 [/mm] + [mm] \lambda_3 [/mm] = 0

[mm] \Rightarrow \lambda_2 [/mm] = [mm] \lambda_3 [/mm]


[mm] \lambda_2 [/mm] in I einsetzen:

[mm] \frac{2}{3}\lambda_1 [/mm] - [mm] \frac{1}{3}\lambda_3 [/mm] + [mm] \frac{2}{3}\lambda_3 [/mm] = 0

[mm] \frac{2}{3}\lambda_1 [/mm] + [mm] \frac{1}{3}\lambda_3 [/mm] = 0 | [mm] \cdot [/mm] 3

[mm] 2\lambda_1 [/mm] + [mm] \lambda_3 [/mm] = 0

[mm] \Rightarrow \lambda_1 [/mm] = [mm] -\frac{1}{2}\lambda_3 [/mm]

[mm] \lambda_1 [/mm] und [mm] \lambda_2 [/mm] in III einsetzen:

[mm] -\frac{1}{3}(-\frac{1}{2}\lambda_3) [/mm] + [mm] \frac{2}{3}\lambda_3 [/mm] + [mm] \frac{2}{3}\lambda_3 [/mm] = 0

[mm] \frac{1}{6}\lambda_3 [/mm] + [mm] \frac{4}{3}\lambda_3 [/mm] = 0 | [mm] \cdot [/mm] 3

[mm] \frac{1}{3}\lambda_3 [/mm] + [mm] 4\lambda_3 [/mm] = 0

[mm] \Rightarrow \lambda_3 [/mm] = 0

[mm] \lambda_3 [/mm] in I einsetzen:

[mm] \frac{2}{3}\lambda_1 [/mm] - [mm] \frac{1}{3}\lambda_2 [/mm] + 0 = 0

[mm] \frac{2}{3}\lambda_1 [/mm] = [mm] \frac{1}{3}\lambda_2 [/mm] | [mm] \frac [/mm] 3

[mm] 2\lambda_1 [/mm] = [mm] \lambda_2 [/mm]

[mm] \lambda_3 [/mm] und [mm] \lambda_2 [/mm] in II einsetzen:

[mm] \frac{2}{3}\lambda_1 [/mm] + [mm] \frac{2}{3}(2\lambda_1) [/mm] - 0 = 0

[mm] \frac{6}{3}\lambda_1 [/mm] = 0

[mm] \Rightarrow \lambda_1 [/mm] = 0

Wenn ich so weiter rechne, bekomme ich natürlich auch für [mm] \lambda_2 [/mm] 0 heraus.

Damit aber die Vektoren linear unabhängig sind, dürfen nicht alle [mm] \lambda [/mm] s Null werden.

Ich vermute stark, dass ich das Einsetzverfahren nicht richtig durchführe.

Kann mir bitte jemand sagen, wo mein Fehler liegt?


Der zweite Teil der Aufgabe: B ist orthogonal, da B [mm] \cdot B^T [/mm] = I herauskommt.

Vielen Dank vorab

Liebe Grüße

Asg

        
Bezug
Orthonormalbasis prüfen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:55 Mi 03.12.2014
Autor: fred97


> Es seien [mm]b_1[/mm] := [mm]\frac{1}{3}\vektor{2 \\ 2 \\ -1}, b_2[/mm] :=
> [mm]\frac{1}{3}\vektor{-1 \\ 2 \\ 2}[/mm] und [mm]b_3[/mm] :=
> [mm]\frac{1}{3}\vektor{2 \\ -1 \\ 2}[/mm]
>  
> a) Zeigen Sie: [mm]\mathfrak{B}[/mm] := [mm]\{\vec{b_1}, \vec{b_2}, \vec{b_3}\}[/mm]
> ist eine Orthonormalbasis des [mm]\IR^3[/mm] und die Matrix B:=
> [mm](\vec{b_1} \vec{b_2} \vec{b_3}) \in \IR^{3x3}[/mm] mit den
> Spalten [mm]\vec{b_i}[/mm] ist orthogonal.
>  Hallo zusammen,
>  
> bei der Lösung des ersten Teils (Orthonormalbasis) zeige
> ich folgendes:
>  
> 1. [mm]\vec{b_1}, \vec{b_2}, \vec{b_3}\[/mm] sind Einheitsvektoren
>  Das klappt.
>  
> 2. Alles drei Vektoren sind paarweise orthogonal.
>  Das klappt auch.
>  
> 3. Zeigen der linearen Unabhängigkeit der Vektoren.
>  
> Hierzu habe ich das Gleichungssystem aufgestellt, aber
> irgendwo mache ich einen Fehler, so dass ich für für alle
> Koeffizienten 0 bekomme und komme nicht weiter ...
>  
> Also meine Lösung:
>  
> [mm]\lambda_1 \cdot \vec{b_1}[/mm] + [mm]\lambda_1 \cdot \vec{b_1}[/mm] +
> [mm]\lambda_1 \cdot \vec{b_1}[/mm] = [mm]\vec{0}[/mm]

Du meinst sicher:

[mm]\lambda_1 \cdot \vec{b_1}[/mm] + [mm]\lambda_2 \cdot \vec{b_2}[/mm] + [mm]\lambda_3 \cdot \vec{b_3}[/mm] = [mm]\vec{0}[/mm]


>  
> [mm]\frac{1}{3}\lambda_1 \vektor{2 \\ 2 \\ -1}[/mm] +
> [mm]\frac{1}{3}\lambda_2 \vektor{-1 \\ 2 \\ 2}[/mm] +
> [mm]\frac{1}{3}\lambda_3 \vektor{2 \\ -1 \\ 2} =\vektor{0 \\ 0 \\ 0}[/mm]
>  
> Ausmultiplizieren:
>  
> I    [mm]\frac{2}{3}\lambda_1[/mm] - [mm]\frac{1}{3}\lambda_2[/mm] +
> [mm]\frac{2}{3}\lambda_3[/mm] = 0
>  
> II   [mm]\frac{2}{3}\lambda_1[/mm] + [mm]\frac{2}{3}\lambda_2[/mm] -
> [mm]\frac{1}{3}\lambda_3[/mm] = 0
>  
> III [mm]-\frac{1}{3}\lambda_1[/mm] + [mm]\frac{2}{3}\lambda_2[/mm] +
> [mm]\frac{2}{3}\lambda_3[/mm] = 0
>  
>
> I - II   [mm]-\frac{3}{3}\lambda_2[/mm] + [mm]\frac{3}{3}\lambda_3[/mm] = 0
>  
> [mm]-\lambda_2[/mm] + [mm]\lambda_3[/mm] = 0
>  
> [mm]\Rightarrow \lambda_2[/mm] = [mm]\lambda_3[/mm]
>  
>
> [mm]\lambda_2[/mm] in I einsetzen:
>  
> [mm]\frac{2}{3}\lambda_1[/mm] - [mm]\frac{1}{3}\lambda_3[/mm] +
> [mm]\frac{2}{3}\lambda_3[/mm] = 0
>  
> [mm]\frac{2}{3}\lambda_1[/mm] + [mm]\frac{1}{3}\lambda_3[/mm] = 0 | [mm]\cdot[/mm] 3
>  
> [mm]2\lambda_1[/mm] + [mm]\lambda_3[/mm] = 0
>  
> [mm]\Rightarrow \lambda_1[/mm] = [mm]-\frac{1}{2}\lambda_3[/mm]
>  
> [mm]\lambda_1[/mm] und [mm]\lambda_2[/mm] in III einsetzen:
>  
> [mm]-\frac{1}{3}(-\frac{1}{2}\lambda_3)[/mm] + [mm]\frac{2}{3}\lambda_3[/mm]
> + [mm]\frac{2}{3}\lambda_3[/mm] = 0
>  
> [mm]\frac{1}{6}\lambda_3[/mm] + [mm]\frac{4}{3}\lambda_3[/mm] = 0 | [mm]\cdot[/mm] 3
>  
> [mm]\frac{1}{3}\lambda_3[/mm] + [mm]4\lambda_3[/mm] = 0
>  
> [mm]\Rightarrow \lambda_3[/mm] = 0
>  
> [mm]\lambda_3[/mm] in I einsetzen:
>  
> [mm]\frac{2}{3}\lambda_1[/mm] - [mm]\frac{1}{3}\lambda_2[/mm] + 0 = 0
>  
> [mm]\frac{2}{3}\lambda_1[/mm] = [mm]\frac{1}{3}\lambda_2[/mm] | [mm]\frac[/mm] 3
>  
> [mm]2\lambda_1[/mm] = [mm]\lambda_2[/mm]
>  
> [mm]\lambda_3[/mm] und [mm]\lambda_2[/mm] in II einsetzen:
>  
> [mm]\frac{2}{3}\lambda_1[/mm] + [mm]\frac{2}{3}(2\lambda_1)[/mm] - 0 = 0
>  
> [mm]\frac{6}{3}\lambda_1[/mm] = 0
>  
> [mm]\Rightarrow \lambda_1[/mm] = 0
>  
> Wenn ich so weiter rechne, bekomme ich natürlich auch für
> [mm]\lambda_2[/mm] 0 heraus.
>  
> Damit aber die Vektoren linear unabhängig sind, dürfen
> nicht alle [mm]\lambda[/mm] s Null werden.

Oha ! Da hast Du was in den falschen Hals bekommen ! Damit die Vektoren linear unabhängig sind , muss(!) aus

     [mm]\lambda_1 \cdot \vec{b_1}[/mm] + [mm]\lambda_2 \cdot \vec{b_2}[/mm] + [mm]\lambda_3 \cdot \vec{b_3}[/mm] = [mm]\vec{0}[/mm]


  folgen: [mm] \lambda_1= \lambda_2= \lambda_3=0 [/mm]

Viel einfacher hättest Du das haben können, wenn Du z.B. die Gleichung

(*)    [mm]\lambda_1 \cdot \vec{b_1}[/mm] + [mm]\lambda_2 \cdot \vec{b_2}[/mm] + [mm]\lambda_3 \cdot \vec{b_3}[/mm] = [mm]\vec{0}[/mm]

mit [mm] \vec{b_1} [/mm] durchmultiplizierst. Da die Vektoren paarweise orthogonl sind bekommst Du:

       [mm] \lambda_1 \cdot \vec{b_1}*\vec{b_1}=0. [/mm]

Wegen [mm] \vec{b_1}*\vec{b_1}=1 [/mm] folgt [mm] \lambda_1=0. [/mm]

[mm] \lambda_2=0 [/mm] bekommt Du , wenn Du (*) mit [mm] \vec{b_2} [/mm] multiplizierst.

Wie man [mm] \lambda_3=0 [/mm] bekommt, dürfte nun klar sein.

FRED


>  
> Ich vermute stark, dass ich das Einsetzverfahren nicht
> richtig durchführe.
>  
> Kann mir bitte jemand sagen, wo mein Fehler liegt?
>  
>
> Der zweite Teil der Aufgabe: B ist orthogonal, da B [mm]\cdot B^T[/mm]
> = I herauskommt.
>  
> Vielen Dank vorab
>  
> Liebe Grüße
>  
> Asg


Bezug
                
Bezug
Orthonormalbasis prüfen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 11:33 Sa 06.12.2014
Autor: asg

Hallo Fred,

Dankeschön für die prompte Antwort.

>  >  
> > Damit aber die Vektoren linear unabhängig sind, dürfen
> > nicht alle [mm]\lambda[/mm] s Null werden.
>  
> Oha ! Da hast Du was in den falschen Hals bekommen ! Damit
> die Vektoren linear unabhängig sind , muss(!) aus
>
> [mm]\lambda_1 \cdot \vec{b_1}[/mm] + [mm]\lambda_2 \cdot \vec{b_2}[/mm] +
> [mm]\lambda_3 \cdot \vec{b_3}[/mm] = [mm]\vec{0}[/mm]
>  
>
> folgen: [mm]\lambda_1= \lambda_2= \lambda_3=0[/mm]
>  

Ich habe wohl vor lauter Bäumen den Wald nicht mehr gesehen :) Natürlich hast recht.

> Viel einfacher hättest Du das haben können, wenn Du z.B.
> die Gleichung
>  
> (*)    [mm]\lambda_1 \cdot \vec{b_1}[/mm] + [mm]\lambda_2 \cdot \vec{b_2}[/mm]
> + [mm]\lambda_3 \cdot \vec{b_3}[/mm] = [mm]\vec{0}[/mm]
>  
> mit [mm]\vec{b_1}[/mm] durchmultiplizierst. Da die Vektoren
> paarweise orthogonl sind bekommst Du:
>  
> [mm]\lambda_1 \cdot \vec{b_1}*\vec{b_1}=0.[/mm]
>  
> Wegen [mm]\vec{b_1}*\vec{b_1}=1[/mm] folgt [mm]\lambda_1=0.[/mm]
>  
> [mm]\lambda_2=0[/mm] bekommt Du , wenn Du (*) mit [mm]\vec{b_2}[/mm]
> multiplizierst.
>  
> Wie man [mm]\lambda_3=0[/mm] bekommt, dürfte nun klar sein.
>  
> FRED
>  
>

Das ist in der Tat geniaaaaaal – ich bezweifele dass ich drauf gekommen wäre, auch wenn ich länger darüber nachgedacht hätte. Aber in der Eile, die ich hatte, wäre ich bestimmt nicht drauf gekommen. Schon wieder was Neues gelernt :)

Ich habe nun etwas weiter nachgedacht und ist mir Folgendes aufgefallen:

Da das Skalarprodukt eines Vektor (ausgenommen dem Nullvektor) mit sich selbst nie 0 ergeben kann,  müsste doch deine Methode allgemein gültig sein und man müsste es nicht für alle drei Vektoren einzeln zeigen, sondern allgmein etwa so zeigen:

Wegen [mm] \vec{b_i} \cdot \vec{b_i} \ne [/mm] 0 und [mm] \vec{b_i} \cdot \vec{b_j} [/mm] = 0 für i [mm] \ne [/mm] j gilt [mm] \lambda_i [/mm] = 0


Oder?

Liebe Grüße

Asg

Bezug
                        
Bezug
Orthonormalbasis prüfen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:20 Mo 08.12.2014
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de