www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Orthonormalensystem
Orthonormalensystem < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Orthonormalensystem: unklarer Formalismus
Status: (Frage) beantwortet Status 
Datum: 14:09 Do 18.04.2013
Autor: piet86

Aufgabe
Die gesamte Aufgabe steht im Anhang
[a]Datei-Anhang

Für <f1/f2> =  [mm] \bruch{1}{\wurzel{2} \pi}\integral_{0}^{\pi}{dx sin(x)} [/mm]

[mm] =\bruch{1}{\wurzel{2} \pi} [/mm] (-cos(x)) (in Grenzen 0 bis 2pi)
was = 0 ist.

das mache ich für alle Funktionen(<f1/f3> und <f2/f3>). Was ich mich nun frage, wie zeigen ich mit den Ergebnissen, dass die Funktionen ein Orthonormalensystem bilden?




bei c) ist mir nicht klar was für eine Rechenoperation zwischen |f1> und <f1|g> gilt.
<f1|g> ist ja das skalar. Muss ich |f1> mit <f1|g> multiplizieren?


Dateianhänge:
Anhang Nr. 1 (Typ: pdf) [nicht öffentlich]
        
Bezug
Orthonormalensystem: Antwort
Status: (Antwort) fertig Status 
Datum: 14:45 Do 18.04.2013
Autor: reverend

Hallo Piet,

ich habe den Anhang mal freigegeben, obwohl er offensichtlich zur Aufgabenstellung gehört und nicht von Dir stammt (hast Du auch nicht behauptet). Dabei gehe ich davon aus, dass die "Schöpfungshöhe" zu gering ist, als dass Urheberrechtsschutz beansprucht werden könnte.

Generell würde ich Dir aber dringend empfehlen, Aufgabenstellungen in ihren wesentlichen Teilen lieber abzutippen. Dann können diejenigen, die antworten, viel leichter darauf Bezug nehmen. Außerdem hat man die Aufgabe dann im jeweiligen Artikel und damit im Blick.

> Die gesamte Aufgabe steht im Anhang
> [a]Datei-Anhang
> Für <f1/f2> =
> [mm]\bruch{1}{\wurzel{2} \pi}\integral_{0}^{\pi}{dx sin(x)}[/mm]

>

> [mm]=\bruch{1}{\wurzel{2} \pi}[/mm] (-cos(x)) (in Grenzen 0 bis
> 2pi)
> was = 0 ist.

Steht das [mm] \pi [/mm] jetzt unter der Wurzel oder nicht?
Sonst ok.

> das mache ich für alle Funktionen(<f1/f3> und <f2/f3>).

Ja.

> Was ich mich nun frage, wie zeigen ich mit den Ergebnissen,
> dass die Funktionen ein Orthonormalensystem bilden?

Keine der drei Funktionen darf als Linearkombination der beiden andern darstellbar sein.

> bei c) ist mir nicht klar was für eine Rechenoperation
> zwischen |f1> und <f1|g> gilt.
> <f1|g> ist ja das skalar. Muss ich |f1> mit <f1|g>
> multiplizieren?

Das ist in der Tat unklar, sieht aber so aus, wie Du es liest. Ich habe aber nicht nachgerechnet, ob das dann auch sinnvolle Ergebnisse liefert.

Deswegen lasse ich die Frage halboffen.

Grüße
reverend

Bezug
        
Bezug
Orthonormalensystem: Antwort
Status: (Antwort) fertig Status 
Datum: 14:57 Do 18.04.2013
Autor: fred97


> Die gesamte Aufgabe steht im Anhang
>   [a]Datei-Anhang
>  Für <f1/f2> =  

> [mm]\bruch{1}{\wurzel{2} \pi}\integral_{0}^{\pi}{dx sin(x)}[/mm]
>  
> [mm]=\bruch{1}{\wurzel{2} \pi}[/mm] (-cos(x)) (in Grenzen 0 bis
> 2pi)
>  was = 0 ist.
>  
> das mache ich für alle Funktionen(<f1/f3> und <f2/f3>).

Ja


> Was ich mich nun frage, wie zeigen ich mit den Ergebnissen,
> dass die Funktionen ein Orthonormalensystem bilden?

Das steht doch in der Aufgabe mit dabei: [mm] [/mm] = [mm] \delta_{ij} [/mm]

Zeigen mußt Du also:  [mm] =0 [/mm] falls i [mm] \ne [/mm] j ist und [mm] =1 [/mm]

Die lineare Unabhängigkeit von [mm] \{f_1,f_2,f_3\} [/mm] ergibt sich daraus.

>  
>
>
>
> bei c) ist mir nicht klar was für eine Rechenoperation
> zwischen |f1> und <f1|g> gilt.
>  <f1|g> ist ja das skalar. Muss ich |f1> mit <f1|g>

> multiplizieren?

Du mußt doch nur die Skalarprodukte [mm] [/mm] berechnen und diese dann in die Darstellung einsetzen.

FRED

>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de