www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Ortskurve der Wendepunkte
Ortskurve der Wendepunkte < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ortskurve der Wendepunkte: Idee?
Status: (Frage) beantwortet Status 
Datum: 13:44 Mi 24.10.2007
Autor: Dummkopf88

Aufgabe
Bestimmen sie die Ortskurve der Wendepunkte der Funktionsschar: ft(x) = - (2x/t) * e^(t-x)  

Hallo ;)

Meine Frage ist eigentlich ziemlich allgemein. Ich weiß wie ich die Ortskurve von Punkten bestimme wie z.b. der Punkte [mm] Pt(t+2|t^2) [/mm]

dann ist mein x = t+2
und mein y = [mm] t^2 [/mm]

ich stelle mein x nach t um und setzt dies in mein y ein, so habe ich die Ortskurve der Punkte Pt

t=x-2
[mm] y=(x-2)^2 [/mm]

Wie mache ich das denn wenn ich z.b. wie bei der oben genannten Aufgabe beim x-wert keine abhängigkeit vom Parameter habe?

Die Wendepunkte liegen bei WP(2|-(4/t)*e^(t-x))
also x=2
und y=-(4/t)*e^(t-x)

Ist bestimmt ganz einfach. Ich kenn es nur nicht. Hat jemand eine Hilfestellung für mich?

Wäre nett, Danke :)

        
Bezug
Ortskurve der Wendepunkte: Antwort
Status: (Antwort) fertig Status 
Datum: 14:16 Mi 24.10.2007
Autor: statler

Mahlzeit!

> Bestimmen sie die Ortskurve der Wendepunkte der
> Funktionsschar: ft(x) = - (2x/t) * e^(t-x)

> Wie mache ich das denn wenn ich z.b. wie bei der oben
> genannten Aufgabe beim x-wert keine abhängigkeit vom
> Parameter habe?
>  
> Die Wendepunkte liegen bei WP(2|-(4/t)*e^(t-x))
>  also x=2
>  und y=-(4/t)*e^(t-x)
>  
> Ist bestimmt ganz einfach. Ich kenn es nur nicht. Hat
> jemand eine Hilfestellung für mich?

1. Ich habe nichts nachgerechnet, aber die Frage, wieso im Term für y noch ein x auftaucht.
2. Wenn du das geklärt hast und wir mal annehmen, daß x = 2 korrekt ist, dann zeichne doch einfach mal 4 oder 5 Punkte der Ortslinie. Dann müßte dir etwas auffallen.

Bis dahin Gruß aus HH-Harburg
Dieter

Bezug
                
Bezug
Ortskurve der Wendepunkte: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 15:58 Mi 24.10.2007
Autor: Dummkopf88

Aufgabe
...

Ja stimmt, es darf natürlich kein x auftreten. da muss eine 2 hin. Somit ist die Ortskurve eine Gerade x=2
Danke.

Also wenn beim X-Wert kein Paramter mehr ist, ist die Ortskurve immer eine Gerade, richtig?

Danke für die Hilfe

Bezug
                        
Bezug
Ortskurve der Wendepunkte: noch etwas
Status: (Antwort) fertig Status 
Datum: 16:08 Mi 24.10.2007
Autor: statler

Hi!

> Also wenn beim X-Wert kein Paramter mehr ist, ist die
> Ortskurve immer eine Gerade, richtig?

Es könnte aber etwas passieren wie [mm] (2|t^{2}), [/mm] dann bekäme man nur eine halbe Gerade. Die Aussage 'Alle Punkte liegen auf einer Geraden' wäre richtig, die Aussage 'Die Ortslinie ist eine Gerade' wäre falsch.

Ciao
Dieter

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de