www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Sonstiges" - Ortskurve effektiv plotten
Ortskurve effektiv plotten < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ortskurve effektiv plotten: Ortskurve, Plot, komplexe Zahl
Status: (Frage) beantwortet Status 
Datum: 14:11 Sa 23.05.2009
Autor: DustSigns

Hallo!

Ich hoffe, dass ich hier richtig bin. Es geht darum, eine Ortskurve, d.h. eine Funktion z=f(w), w [mm] \in \IR, [/mm] z [mm] \in \IC [/mm]  möglichst effektiv in einem vorgegebenen z-Wertebereich zu plotten, wobei der dazugehörige w-Wertebereich nicht bekannt ist. Mein momentaner (natürlich völlig ineffizienter) Ansatz startet bei w=0 mit einer Schrittweite von 1 und versucht, die Schrittweite so anzupassen, dass der Abstand zwischen den dazugehörigen z-Werten möglichst "optimal" ist, d.h. in etwa der Größe eines Pixels auf einer Zeichenfläche entspricht. Ist die korrekte Schrittweite gefunden, wird der aktuelle Wert gespeichert und der nächste Wert inkl. Schrittweite wie zuvor beschrieben ermittelt. Das geht bis [mm] +\infty, [/mm] danach werden alle z-Werte, die nicht im anfangs definierten Bereich liegen, gelöscht, um sie nicht zeichnen zu müssen. Danach wird das ganze in die Gegenrichtung von 0 bis [mm] -\infty [/mm] wiederholt.
Das hat natürlich den Nachteil unnötiger Berechnungen und enormer Instabilität, wenn Polstellen oder anderwertige Sprünge in der Funktion auftreten. Gibt es einen besseren Algorithmus, um eine Ortskurve so zu zeichnen bzw. was kann man an der bestehenden Methode ändern, um sie effizienter und stabiler zu machen?

Bin für Hinweise dankbar
Dust Signs

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Ortskurve effektiv plotten: Antwort
Status: (Antwort) fertig Status 
Datum: 19:26 Sa 23.05.2009
Autor: leduart

Hallo
Da das ja ne Abbildung von C nach C bzw. [mm] R^2 [/mm] nach [mm] R^2 [/mm] ist kannst du keine Ortskurve plotten.
Du kannst ein Gitter (rechteckig oder Polar) in dein Def. Gebiet legen, und das abbilden.
geh zu []3d explore
sieh dir einige der konformen Abbildungen an, dann kannst du unter "Nutserdef" deine eigenen eingeben.
statt als applet kannst du dir auch das Programm runterladen bei http://3d-xplormath.org/j/index_de.html
Gruss leduart

Bezug
                
Bezug
Ortskurve effektiv plotten: Klarstellung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:18 Mo 25.05.2009
Autor: DustSigns

Ich habe mich scheinbar nicht klar ausgedrückt und möchte daher an dieser Stelle noch einmal beschreiben, was ich eigentlich erreichen möchte: ich habe eine Funktion f(w)=z, wobei w [mm] \in \IR [/mm] und z [mm] \in \IC, [/mm] also eine Ortskurve, wobei w die Frequenz ist. Nun habe ich beispielsweise eine Funktion [mm] f(w)=\bruch{1-jw}{1+w^{2}}, [/mm] die ich zeichnen möchte. Es geht mir dabei um den Algorithmus des Zeichnens, da ich eine solche Zeichenfunktion implementieren muss (die Programmiersprache spielt keine Rolle, da es mir nur um die prinzipielle Vorgangsweise geht). Mein erster Ansatz war wie gesagt, dass ich von 0 bis [mm] +\infty [/mm] die Schrittweite entsprechend der gezeichneten Werte anpasse, damit deren Abstand zueinander einem Pixel meiner Zeichenfläche entspricht, damit ich weder unnötig genau, noch zu ungenau zeichne.
Dieser Algorithmus ist wie gesagt sehr langsam und instabil, zudem wird er mit steigendem Zoom ineffizient. Wenn ich den sichtbaren Bereich meines Koordinatensystems auf z.B. [-0,1-0,1j,0,1+0,1j] beschränke, so werden einige Punkte unnötigerweise gezeichnet (sie sind ja in diesem Ausschnitt nicht sichtbar), da ich die weiter bis [mm] +\infty [/mm] gehen muss, da ich ja nicht weiß, ob die Kurve für höhere Werte von w nicht wieder in den sichtbaren Bereich tritt. Wüsste ich, dass das nicht der Fall ist, könnte ich den Zeichenvorgang selbstverständlich abbrechen.
Wie gesagt suche ich einen Algorithmus, mit dem ich effektiv einen zumindest pixelgenauen Plot einer beliebigen Ortskurve zeichnen kann, wobei die numerische Stabilität und die Geschwindigkeit höher sein sollte als in meinem bisherigen, primitiven Ansatz.

Ich hoffe, dass ich das Problem genau genug beschrieben habe, um weitere Anregungen zu bekommen. Falls etwas unklar ist, bitte um entsprechende Rückmeldung
Danke im Voraus für eure Hilfe
Dust Signs

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de