www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Regelungstechnik" - Ortskurve zeichnen
Ortskurve zeichnen < Regelungstechnik < Ingenieurwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Regelungstechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ortskurve zeichnen: speziell IT1-Glied
Status: (Frage) beantwortet Status 
Datum: 18:04 So 22.03.2009
Autor: sashdan

Aufgabe
Geben Die die Ortskurve für ein IT1 System an!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ich verstehe einfach nicht wie ich auf den Verlauf der Ortskurve eines IT1-Gliedes komme. Irgendetwas scheint da mit den Winkeln nicht hin zu hauen.

Also ich habe die folgende Übertragungsfunktion gegeben:

G(s) = k/(s*(1+s*T))

und substituiere s = j [mm] \omega [/mm] und erhalte

[mm] G(j\omega) [/mm] = [mm] \bruch{k}{j\omega*(1+j\omega*T)} [/mm] = [mm] \bruch{k/\omega}{(j - \omega*T)} [/mm]

den Nenner schreibe ich dann in Polarkoordinaten und erhalte:

[mm] G(j\omega) [/mm] = [mm] \bruch{k/\omega}{\wurzel{1^2+(-\omega*T)^2}}*e^{-j\phi} [/mm]

mit [mm] \phi [/mm] = [mm] arctan(\bruch{1}{-\omega*T}) [/mm]

Wenn ich jetzt
[mm] \omega \rightarrow [/mm] 0 setze erhalte ich für

[mm] Winkel(G(j\omega) [/mm] = [mm] -arctan(\bruch{1}{-\omega*T}) [/mm] = 90°

dies soll aber -90° sein!

Genauso für [mm] \omega \rightarrow \infty [/mm] komme ich auf 0°, obwohl es -180° sein soll!

Wie komme ich auf die richtigen Winkel und wo liegt mein Fehler?

Gruß,

Sascha


        
Bezug
Ortskurve zeichnen: Arcustangens nicht eindeutig
Status: (Antwort) fertig Status 
Datum: 18:39 So 22.03.2009
Autor: Infinit

Hallo sashdan,
zunächst einmal [willkommenvh].
Der Arcustangens ist leider nicht eindeutig, sondern mehrdeutig in Pi, und so muss man nachschauen, wo man sich befindet. Wenn Du Deinen Ausdruck für [mm] G(j \omega) [/mm] aus der ersten Zeile mit dem konjugiert Komplexen des Nenners erweiterst, wird der Nenner reell und im Zähler hast Du einen Ausdruck
$$ k (- [mm] \omega^2 T^2 [/mm] - j [mm] \omega) [/mm] $$
Für kleine Omegawerte sind Real- und Imaginärteil negativ, Du befindest Dich also im dritten Quadranten und so kommen die - 90 Grad zustande. Entsprechendes gilt für den Grenzwert gegen Unendlich.
Beim Arcustnagens muss man immer noch mal checken, wo man sich in der komplexen Ebene genau befindet, geht leider nicht anders.
Viele Grüße,
Infinit

Bezug
                
Bezug
Ortskurve zeichnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:45 So 22.03.2009
Autor: sashdan

also ich hab ich
[mm] G(j\omega) = ... * \exp{(-j*\phi)} mit \phi = arctan(\bruch{1}{-\omega*T})+\pi und damit Winkel(G(j\omega)) = - (arctan(\bruch{1}{-\omega*T})+\pi}) Folglich ergibt sich für \omega \rightarrow 0: Winkel(G(j\omega)) = -(- 90°+\pi) =90°-\pi = -90° und für \omega \rightarrow \infty: Winkel(G(j\omega)) = -(- 0°+\pi) =0°-\pi = -180° [/mm]
Danke für Deine Hilfe,

Gruß,
sashdan

Bezug
                        
Bezug
Ortskurve zeichnen: Tricky
Status: (Antwort) fertig Status 
Datum: 16:48 Mo 23.03.2009
Autor: Infinit

Ja, das ist leider immer etwas tricky und man aufpassen, in welchem Teil der komplexen Ebene man sich befindet.
VG,
Infinit

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Regelungstechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de