www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Eigenwerte" - Othonormalbasis aus EV
Othonormalbasis aus EV < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Othonormalbasis aus EV: Idee
Status: (Frage) beantwortet Status 
Datum: 16:08 Di 23.01.2007
Autor: celeste16

Aufgabe
Finden Sie eine Orthonormalbasis, die aus Eigenvektoren für die angegebene Matrix besteht.

A = [mm] \pmat{ -2 & i \\ -i & -2 } [/mm]


ich hab hier "nur" die frage wie ich vorgehen muss:

- EV von A berechnen
aber dann?

ich weiß wie ich eine orthonormalbasis berechne, aber nicht wie ich diese aufgabe lösen soll

könnt ihr mir ne anleitung geben?

        
Bezug
Othonormalbasis aus EV: Antwort
Status: (Antwort) fertig Status 
Datum: 23:14 Di 23.01.2007
Autor: angela.h.b.


> Finden Sie eine Orthonormalbasis, die aus Eigenvektoren für
> die angegebene Matrix besteht.
>  
> A = [mm]\pmat{ -2 & i \\ -i & -2 }[/mm]
>  
> ich hab hier "nur" die frage wie ich vorgehen muss:
>  
> - EV von A berechnen
>  aber dann?
>  
> ich weiß wie ich eine orthonormalbasis berechne, aber nicht
> wie ich diese aufgabe lösen soll

>

Hallo,

Du hast ja schon die richtige Idee.
Eigenwerte berechnen, dann die Eigenvektoren.

Nun hast Du hier eine Matrix vorliegen, welche hermitesch ist. Das hat zur Folge, daß die Eigenvektoren zu verschiedenen Eigenwerten "automatisch" orthoGONal sind. In dem Fall verschiedenr Eigenwerte mußt Du  sie ggf. noch normieren, denn es ist ja eine OrthNORMalbasis gesucht.

Hat die Matrix zwei gleiche Eigenwerte, mußt Du hingegen Deine Eigenvektoren orthonormalisieren.

Gruß v. Angela

Bezug
                
Bezug
Othonormalbasis aus EV: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:07 Mi 24.01.2007
Autor: celeste16

ach so, danke.
habe mir das viel komplizierter gedacht

Bezug
                        
Bezug
Othonormalbasis aus EV: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:09 Do 25.01.2007
Autor: angela.h.b.

Hallo,

beachte bitte die editierte Fassung meiner Antwort.

Es spielt zwar für die aktuelle Aufgabe keine Rolle, da die Eigenwerte verschieden sind, aber Du solltest wissen, daß bei hermiteschen Matrizen die
Eigenvektoren zu verschiedenen Eigenwerten orthogonal sind.

Die Eigenvektoren zu gleichen Eigenwerten mußt Du orthogonalisieren, um eine Orthogonalbasis zu erhalten.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de