www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Statistik (Anwendungen)" - P-stochastisch
P-stochastisch < Statistik (Anwend.) < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

P-stochastisch: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:54 Mo 12.01.2009
Autor: Nataliee

Aufgabe
Seien [mm] Z_n, Y_n [/mm] : ­ [mm] \Omega [/mm] -> [mm] \IR [/mm] Zufallsvariablen für n [mm] \in \IN_0 [/mm] mit
[mm] Z_n->Z_0 [/mm] , [mm] Y_n->Y_0 [/mm] jeweils P-stochastisch.
(a) Zeigen Sie: [mm] Z_nY_n [/mm] -> [mm] Z_0Y_0 [/mm] P-stochastisch.
(b) Sei [mm] Z_0 \equiv [/mm] c > 0 konstant.
Zeigen Sie: [mm] Y_n [/mm] * [mm] \bruch{1}{Z_n} [/mm] 1 [mm] _{_{\{Z_n>0\}}} [/mm] -> [mm] Y_0* \bruch{1}{c} [/mm] P-stochastisch.

Hallo,
verstehe ich das richtig das ich bei a) zeigen soll das Z und Y unabhängig sind?

        
Bezug
P-stochastisch: Antwort
Status: (Antwort) fertig Status 
Datum: 14:16 Mo 12.01.2009
Autor: generation...x

Erstens: Wo hast du da ein X?

Zweitens: Nein. Du hast zwei Folgen von Zufallsvariablen, die jeweils konvergieren. Jetzt sollst du zeigen, dass auch das Produkt der jeweiligen Folgenglieder gegen das Produkt der Grenz-Zufallsvariablen konvergiert.

Bei der b) solltest du überlegen, wie [mm]1_{Z_n>0}[/mm] aussieht, wenn [mm]Z_0 = c > 0[/mm].

Bezug
                
Bezug
P-stochastisch: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:45 Mo 12.01.2009
Autor: Nataliee

Hallo generation...x,
habe das X korregiert.
Also allgemein kenne ich als Definition:
Die Folge  [mm] Z_n [/mm] konvergiert P-stochastisch gegen [mm] X_0 [/mm] falls
                [mm] \limes_{n\rightarrow\infty} P(d(Z_n,Z_0)>\epsilon) [/mm] = 0 für jedes [mm] \epsilon [/mm] >0.

Aber damit komme ich nicht weiter. Was überseh ich?

Bezug
                        
Bezug
P-stochastisch: Antwort
Status: (Antwort) fertig Status 
Datum: 15:03 Mo 12.01.2009
Autor: generation...x

Also erstmal ist d hier vermutlich der Betrag. Und dann musst du einfach mal einsetzen. Gesucht wird

[mm]\limes_{n\rightarrow\infty} P(|Z_n Y_n - Z_0 Y_0| > \epsilon)[/mm]

Gegeben sind

[mm]\limes_{n\rightarrow\infty} P(|Z_n - Z_0 | > \epsilon) = 0[/mm]
[mm]\limes_{n\rightarrow\infty} P(|Y_n - Y_0 | > \epsilon) = 0[/mm]

Jetzt brauchst du noch eine gescheite Abschätzung...

Bezug
                                
Bezug
P-stochastisch: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 16:02 Mo 12.01.2009
Autor: Nataliee

Schön jetzt ist klar was man bei a) machen soll die Frage ist nur wie...
Ziel:
Zeigen Sie: $ [mm] Z_nY_n [/mm] $ -> $ [mm] Z_0Y_0 [/mm] $ P-stochastisch.

Die Folge  $ [mm] Z_n Y_n$ [/mm] konvergiert P-stochastisch gegen $ [mm] Z_0Y_0 [/mm] $ falls
[mm]\limes_{n\rightarrow\infty} P(|Z_n Y_n - Z_0 Y_0| > \epsilon)[/mm] ,für jedes [mm] \epsilon [/mm] >0.

Gegeben
$ [mm] \limes_{n\rightarrow\infty} P(d(Z_n,Z_0)>\epsilon) [/mm] $ =0 ,für jedes [mm] \epsilon [/mm] >0.
<=>[mm]\limes_{n\rightarrow\infty} P(|Z_n - Z_0 | > \epsilon) = 0[/mm]
und
[mm]\limes_{n\rightarrow\infty} P(|Y_n - Y_0 | > \epsilon) = 0[/mm],für jedes [mm] \epsilon [/mm] >0.
<=>[mm]\limes_{n\rightarrow\infty} P(|Z_n - Z_0 | > \epsilon) = 0[/mm]

Bin nicht im klaren aber könnte es so funktionieren?:
[mm] \limes_{n\rightarrow\infty} P(|Y_n [/mm] - [mm] Y_0 [/mm] | > [mm] \epsilon)*\limes_{n\rightarrow\infty} P(|Z_n [/mm] - [mm] Z_0 [/mm] | > [mm] \epsilon) [/mm]

[mm] =\limes_{n\rightarrow\infty} P(|Y_n [/mm] - [mm] Y_0 [/mm] | > [mm] \epsilon)* P(|Z_n [/mm] - [mm] Z_0 [/mm] | > [mm] \epsilon) [/mm]

[mm] =\limes_{n\rightarrow\infty} P(|Y_n [/mm] - [mm] Y_0 [/mm] | *| [mm] Z_n [/mm] - [mm] Z_0 [/mm] | > [mm] \epsilon) [/mm]

[mm] =\limes_{n\rightarrow\infty} P(|Y_nZ_n [/mm] - [mm] Y_0Z_0 [/mm] |  > [mm] \epsilon) [/mm]

Demnach ist $ [mm] Z_nY_n [/mm] $ -> $ [mm] Z_0Y_0 [/mm] $ P-stochastisch.

Bezug
                                        
Bezug
P-stochastisch: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 Mi 14.01.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de