www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - PQ-Formel
PQ-Formel < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

PQ-Formel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:37 Fr 06.02.2009
Autor: Max80

Aufgabe
Zeige, dass die Gleichung [mm] x^4 [/mm] - [mm] 4x^3 [/mm] + 27 = 0

nur die Lösung x = 3 (diese sogar doppelt) hat!

bin bis jetzt soweit:

[mm] x^4 [/mm] - [mm] 4x^3 [/mm] = -27

jetzt die quadraht-wurzel ziehen:

[mm] x^2 [/mm] - 4x = -27

sieht mir nach pq-formel aus. also:

[mm] x^2 [/mm] - 4x +27 = 0

pq:

[mm] x_{1,2} [/mm] = +2 [mm] \pm \wurzel{4 - 27} [/mm]

jetzt habe ich allerdings das problem, dass die wurzel negativ ist.... :(

was ist jetzt eigtl. mit "doppelt" gemeint??


danke!!

        
Bezug
PQ-Formel: Korrektur/Lösungsversuch
Status: (Antwort) fertig Status 
Datum: 23:55 Fr 06.02.2009
Autor: barsch

Hi,

> Zeige, dass die Gleichung [mm]x^4[/mm] - [mm]4x^3[/mm] + 27 = 0
>  
> nur die Lösung x = 3 (diese sogar doppelt) hat!
>  bin bis jetzt soweit:
>  
> [mm]x^4[/mm] - [mm]4x^3[/mm] = -27
>  
> jetzt die quadraht-wurzel ziehen: [stop]
>  
> [mm]x^2[/mm] - 4x = -27

du kannst nicht einfach die Wurzel auf einer Seite ziehen und auf der anderen Seite nicht. Zudem ziehst du die Wurzel komponentenweise - das geht auch nicht! Zudem ist [mm] \wurzel{4x^3}=4x^{\bruch{3}{2}}\not=4x [/mm]

Wie würde ich vorgehen [kopfkratz3]

[mm] x^4-4x^3+27=0 [/mm]

[mm] \gdw x^4-4x^3=-27 [/mm]

[mm] \gdw x^2*(x^2-4x)=-27 [/mm]

-27 lässt sich nur darstellen durch: [mm] (-3)\cdot{9} [/mm] bzw. [mm] 9\cdot{(-3)} [/mm] oder [mm] 3\cdot{(-9)} [/mm] bzw. [mm] (-9)\cdot{3} [/mm]

Weitere Überlegungen bringen einen dann zu dem Schluss, dass nur x=3 Lösung ist.

MfG barsch

Bezug
                
Bezug
PQ-Formel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:42 Sa 07.02.2009
Autor: max3000

Ich denke mal die Aufgabe läuft darauf hinaus, dass man das Ding in Linearfaktoren mit Polynomdivision zerlegen soll.

Also den Term 2 mal durch (x-3) teilen, dann sollte man auf was kommen wie:

[mm] (x-3)^2*(x^2+ax+b)=0, [/mm]

wobei [mm] x^2+ax+b [/mm] keine reelle Nullstellen hat, quasi der Term in der Wurzel in der PQ-Formel negativ ist.

Bezug
                        
Bezug
PQ-Formel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:48 Sa 07.02.2009
Autor: barsch

Hi,

stimmt, Polynomdivision. Gut!

MfG barsch

Bezug
                                
Bezug
PQ-Formel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:02 Sa 07.02.2009
Autor: Max80

erstmal danke! ohne die experten hier wär ich aufgeschmissen! wirklich!

aber warum 2x durch (x-3)??

Bezug
                                        
Bezug
PQ-Formel: Antwort
Status: (Antwort) fertig Status 
Datum: 01:57 Sa 07.02.2009
Autor: max3000

Weil in der Aufgabenstellung verraten ist, dass 3 eine doppelte Lösung ist.
Schau dir mal den Fundamentalsatz der Algebra an (Google hilft). Dann kannst du ein Polynom mit den Nullstellen [mm] x_i [/mm] in Linearfaktoren [mm] (x-x_1)*\ldots(x-x_n) [/mm] zerlegen.
Genau das erreichst du mit Polynomdivision.

Bezug
                        
Bezug
PQ-Formel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 02:11 Sa 07.02.2009
Autor: Max80

ist das denn richtig dividiert? die 27 ist ja verschwunden...

Bezug
                                
Bezug
PQ-Formel: Antwort
Status: (Antwort) fertig Status 
Datum: 03:27 Sa 07.02.2009
Autor: schachuzipus

Hallo Max80,

> ist das denn richtig dividiert? die 27 ist ja
> verschwunden... [haee]

Was genau meinst du damit?

Das Restpolynom, von dem in dem post oben die Rede ist, bekommst du, wenn du dein Ausgangspolynom durch [mm] $(x-3)^2$ [/mm] teilst, bzw. in 2 Schritten durch $(x-3)$ teilst und dann das Ergebnis nochmal durch $(x-3)$ teilst

[mm] $(x^4-4x^3+27):(x-3)=x^3-x^2-3x-9$ [/mm]

Rechne das nach!

Dann dasselbe nochmal mit dem Ergebnis, also

[mm] $(x^3-x^2-3x-9):(x-3)=...$ [/mm]

selber ausrechnen!

Das Ergebnis(polynom) ist vom Grad 2 und hat dann keine weiter(n) reelle(n) NST(en), das kannst du zB. mit der p/q-Formel nachrechnen.

Auf dieses Polynom vom Grad 2 wollte dich max3000 stupsen.

Also rechne mal nach und am besten auch hier vor ;-)

LG

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de