www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - (P,Q)=1<=>Kernf(P,Q) =0
(P,Q)=1<=>Kernf(P,Q) =0 < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

(P,Q)=1<=>Kernf(P,Q) =0: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:10 So 09.04.2006
Autor: neli

Aufgabe
c) Die Abbildung f= f(P,Q) von [mm] k[x]_m \times k[x]_n [/mm] nach [mm] k[x]_{m+n} [/mm]
mit (S,T)  [mm] \mapsto [/mm] SQ + TP ist linear
d) Es gilt (P,Q) = 1 [mm] \gdw [/mm] Kernf(P,Q)=0

Also Teil c habe ich schon kann also vorrausgesetzt werden.
die Richtung [mm] \Rightarrow [/mm] habe ich auch schon mir fehlt nur der Rückschritt
Habe als Ansatz bisher:
Kernf(P,Q) = 0 [mm] \gdw [/mm] f ist injektiv (da f linear) [mm] \gdw [/mm] f bijektiv (da [mm] dim(k[x]_m \times k[x]_n) [/mm] = [mm] dim(k[x]_{m+n})) [/mm]
[mm] \Rightarrow \exists [/mm] ! (S,T) mit SQ + TP =1 daraus würde ich jetzt gerne irgendwie folgern, dass der ggT von Q und P eins sein muss aber ich habe keine Ahnung wie
Habe schon den Tipp bekommen, dass man bei der Aufgabe irgendwo den Grad beachten muss und aufgabe 3a)= Zeige: Aus P|QR und (P,Q)=1 folgt P|R  habe aber keine Ahnung wie ich das da benutzen kann...


Ich habe die Frage in keinem anderen Forum gestellt

        
Bezug
(P,Q)=1<=>Kernf(P,Q) =0: Antwort
Status: (Antwort) fertig Status 
Datum: 13:41 So 09.04.2006
Autor: felixf

Hallo neli!

> c) Die Abbildung f= f(P,Q) von [mm]k[x]_m \times k[x]_n[/mm] nach
> [mm]k[x]_{m+n}[/mm]
> mit (S,T)  [mm]\mapsto[/mm] SQ + TP ist linear
>  d) Es gilt (P,Q) = 1 [mm]\gdw[/mm] Kernf(P,Q)=0
>  
> Also Teil c habe ich schon kann also vorrausgesetzt
> werden.
>  die Richtung [mm]\Rightarrow[/mm] habe ich auch schon mir fehlt nur
> der Rückschritt
>  Habe als Ansatz bisher:
>  Kernf(P,Q) = 0 [mm]\gdw[/mm] f ist injektiv (da f linear) [mm]\gdw[/mm] f
> bijektiv (da [mm]dim(k[x]_m \times k[x]_n)[/mm] = [mm]dim(k[x]_{m+n}))[/mm]
>  [mm]\Rightarrow \exists[/mm] ! (S,T) mit SQ + TP =1

Bisher ist alles richtig.

> daraus würde
> ich jetzt gerne irgendwie folgern, dass der ggT von Q und P
> eins sein muss aber ich habe keine Ahnung wie

Mach es dochmal so: Offensichtlich ist $1$ ein Teiler von $P$ und $Q$. Sei $D$ ein Polynom, welches $Q$ und $P$ teilt. Dann teilt es auch $S Q$ und $T P$, also insbesondere auch $S Q + T P = 1$.

Damit erfuellt also $1$ die Definition von groesster gemeinsamer Teiler von $P$ und $Q$, also $(P, Q) = 1$!

>  Habe schon den Tipp bekommen, dass man bei der Aufgabe
> irgendwo den Grad beachten muss und aufgabe 3a)= Zeige: Aus
> P|QR und (P,Q)=1 folgt P|R  habe aber keine Ahnung wie ich
> das da benutzen kann...

Ich seh grad nicht was das hier bringen koennte...

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de