www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Parabelgleichung bestimmen
Parabelgleichung bestimmen < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Parabelgleichung bestimmen: Frage
Status: (Frage) beantwortet Status 
Datum: 19:26 Sa 04.12.2004
Autor: Ioana

Hallo,
wir haben eine Hausaufgabe auf, in der wir die Normalform einer Parabel bestimmen sollen, also f(x) = ax²+bx+c.

Dabei ist folgendes bekannt:

Die Parabel hat ihren Scheitel im Ursprung, also S(0/0).
Weiter existiert eine Tangente mit der Steigung 2 an der x-Koordinate 5.
also hat die Gerade die Funktion g(x) = 2x + n.

Mein Ansatz: Da der Scheitelpunkt der Parabel im Ursprung liegt, sind b = c = 0.
Also lautet die Parabelfunktion f(x) = ax².
Bei x = 5 berührt die Parabel die Tangente, also gilt: 25a = 10+n.

Weiter komme ich nicht. Ein Bekannter konnte die Aufgabe mittels Ableitung lösen, aber das haben wir noch nicht durchgenommen in der Schule.
Also muss es doch einen anderen Weg geben, oder?
Vielen Dank im Voraus schonmal.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Parabelgleichung bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:29 Sa 04.12.2004
Autor: Sigrid

Hallo Joana,

> Hallo,
>  wir haben eine Hausaufgabe auf, in der wir die Normalform
> einer Parabel bestimmen sollen, also f(x) = ax²+bx+c.
>  
> Dabei ist folgendes bekannt:
>  
> Die Parabel hat ihren Scheitel im Ursprung, also S(0/0).
>  Weiter existiert eine Tangente mit der Steigung 2 an der
> x-Koordinate 5.
>  also hat die Gerade die Funktion g(x) = 2x + n.
>  
> Mein Ansatz: Da der Scheitelpunkt der Parabel im Ursprung
> liegt, sind b = c = 0.
>  Also lautet die Parabelfunktion f(x) = ax².
>  Bei x = 5 berührt die Parabel die Tangente, also gilt: 25a
> = 10+n.
>  
> Weiter komme ich nicht. Ein Bekannter konnte die Aufgabe
> mittels Ableitung lösen, aber das haben wir noch nicht
> durchgenommen in der Schule.
>  Also muss es doch einen anderen Weg geben, oder?

Den gibt es. Bei quadratischen Parabeln gilt: Parabel und Tangente haben genau einen gemeinsamen Punkt.
d.h. die Gleichung
[mm] ax^2 = 2x+n [/mm]
hat genau eine Lösung. Wenn du also diese Gleichung nach x löst,
(Erg.: [mm] x = \bruch{1}{a} \pm \wurzel{\bruch{1}{a^2} + \bruch {n}{a}} [/mm]. Bitte überprüfen)
muss der Ausdruck unter der Wurzel 0 sein. Damit hast du deine zweite Gleichung.
Ich denke, damit kommst du weiter. Sonst melde dich

Gruß Sigrid

>  Vielen Dank im Voraus schonmal.
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  


Bezug
                
Bezug
Parabelgleichung bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:00 Sa 04.12.2004
Autor: Ioana

Hallo Sigrid,

vielen Dank für die Hilfe.

Habe nun a = 1/5 herausbekommen. Also ist die Geradengleichung
g(x) = 2x - 5.
Ich musste nur im Internet suchen und habe festgestellt, dass du die "Mitternachtsformel" benutzt hast. Ich kenne aus der Schule nur die p/q-Formel. Aber Bei entsprechenden Umformungen erhält man mit der p/q-Formel ja die selbe Lösung. Da bin ich nur erst nicht drauf gekommen.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de