www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ökonomische Funktionen" - Parabeluntersuchung(real.Bez.)
Parabeluntersuchung(real.Bez.) < Ökonomische Funktion < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ökonomische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Parabeluntersuchung(real.Bez.): Aufgabe
Status: (Frage) beantwortet Status 
Datum: 14:17 Fr 28.03.2008
Autor: GinaLisa

Aufgabe
Einem Unternehmen enstehen bei x Produktionseinheiten die Gesamtkosten K(x) (in €). Diese können im Bereich 0 [kleiner gleich] x [kleiner gleich] 50 erfahrungsgemäß durch die Kostenfunktion K mit K(x) = 0,044x³- 2x²+ 50x+ 600 beschrieben werden. Jede Produktionseinheit wird für 60€ verkauft. Die zuordnung x -> U(x), welche x Produktionseinheiten durch den Verlauf dem Umsatz zuordnet, heißt Zusatzfunktion.

a) Zeichnen Sie die Schaubilder der Kosten- und der Umsatzfunktionen in ein gemeinsames Achsenkreuz. Lesen Sie den Bereich ab, in dem das Unternehmen Gewinn macht.

b) Bei wie vielen Produktionseinheiten wird der Gewinn am größten?

c) Durch ein Überangebot kann das Unternehmen eine Produktionseinheit nur noch für 40€ verkaufen. Zeichnen Sie das Schaubild der neuen Umsatzfunktion in das vorhandene Achsenkreuz ein. Warum kann das Unternehmen in dieser Marktsituation nicht mehr mit Gewinn produzieren?

d) Zeichnen Sie das Schaubild der Umsatzfunktion ein, bei der das Unternehmen gerade ohen Velrust arbeiten kann.  Berechnen Sie den Preis, den das Unternehmen pro Produktionseinheit verlangen muss, um velrustfrei zu produzieren.  

Die Aufgabenstellung ist mir klar, nur entsprechen die Schaubilder, die der GTR anzeigt oder die ich gezeichnet habe nicht meiner Vorstellung und deshalb kann ich in dieser Aufgabe nichts damit anfangen.

Kann mir bitte jemand weiterhelfen?
Vielen Dank schon mal im Vorraus.

[Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt!]

        
Bezug
Parabeluntersuchung(real.Bez.): Antwort
Status: (Antwort) fertig Status 
Datum: 14:31 Fr 28.03.2008
Autor: Analytiker

Hi Gina-Lisa,

erst einmal herzlich [willkommenmr] *smile* !!!

> Einem Unternehmen enstehen bei x Produktionseinheiten die
> Gesamtkosten K(x) (in €). Diese können im Bereich 0
> [kleiner gleich] x [kleiner gleich] 50 erfahrungsgemäß
> durch die Kostenfunktion K mit K(x) = 0,044x³- 2x²+ 50x+
> 600 beschrieben werden. Jede Produktionseinheit wird für
> 60€ verkauft. Die zuordnung x -> U(x), welche x
> Produktionseinheiten durch den Verlauf dem Umsatz zuordnet,
> heißt Zusatzfunktion.
>
> a) Zeichnen Sie die Schaubilder der Kosten- und der
> Umsatzfunktionen in ein gemeinsames Achsenkreuz. Lesen Sie
> den Bereich ab, in dem das Unternehmen Gewinn macht.

Ich habe dir das eben mal geplottet, dann kannst du das mit deiner Zeichnung abgleichen. Generell musst du ja nur eine Wertetabelle für bei de Funktionen anlegen, um im Definitionsbereich von [0;50] Werte eintragen und einsetzen:

[Dateianhang nicht öffentlich]

(Rot: Kostenfunktion, Blau: Umsatzfunktion)

> b) Bei wie vielen Produktionseinheiten wird der Gewinn am größten?

Du möchtest also die gewinnmaximale Menge ermitteln. Dies schaffst du, indem du erst einm al die Gewinnfunktion G(x) ermittelst. Diese bekommst du, wenn du folgendes errechnest: G(x) = U(x) - K(x). Danach leitest du die ermittelte Gewinnfunktion einmal ab, und kannst die Extremstelle ermitteln. Diese ist dann deine gewinnmaximale Menge (Funktionswert: gewinnmaximaler Preis).

> c) Durch ein Überangebot kann das Unternehmen eine
> Produktionseinheit nur noch für 40€ verkaufen. Zeichnen Sie
> das Schaubild der neuen Umsatzfunktion in das vorhandene
> Achsenkreuz ein. Warum kann das Unternehmen in dieser
> Marktsituation nicht mehr mit Gewinn produzieren?

Hier hast du also die Grenzumsatzfunktion U'(x) = 40 gegeben. Wenn du das aufleitest, erhälst du die neue Umsatzfunktion. (Hier: gelb)

[Dateianhang nicht öffentlich]

> d) Zeichnen Sie das Schaubild der Umsatzfunktion ein, bei
> der das Unternehmen gerade ohne Verlust arbeiten kann.  
> Berechnen Sie den Preis, den das Unternehmen pro
> Produktionseinheit verlangen muss, um velrustfrei zu
> produzieren.

Ohne Verlust bedeutet ja, das der Gewinn gleich Null sein muss. Du musst hier also Die K(x) und die U(x) gleichsetzen, und dann nach x auflösen, um die sog. Break-Even-Menge (Gewinn gleich null) herauszubekommen...

Ich hoffe ich konnte dir ein wenig helfen!?! ;-)

Liebe Grüße
Analytiker
[lehrer]

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
Anhang Nr. 2 (Typ: jpg) [nicht öffentlich]
Bezug
                
Bezug
Parabeluntersuchung(real.Bez.): Aufgabe
Status: (Korrektur) oberflächlich richtig Status 
Datum: 14:51 Fr 28.03.2008
Autor: GinaLisa

Die Aufgabe wurde anschaulich und verständlich erklärt, so dass ich die Lösung jetzt gut nachvollziehen kann.

Vielen, vielen Dank an den Helfer (Analytiker). :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ökonomische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de