www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Numerik linearer Gleichungssysteme" - Parallelisierbarkeit
Parallelisierbarkeit < Lin. Gleich.-systeme < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Numerik linearer Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Parallelisierbarkeit: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 08:36 Mi 22.10.2014
Autor: Karl87

Hallo,

beschäftige mich gerade mit den iterativen Verfahren des Gauß-Seidel und Jacobi-Verfahren. Was bedeutet in dem Zusammenhang Parallelisierbarkeit? Und welche der Verfahren ist dann parallelisierter?

Danke u vG

        
Bezug
Parallelisierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 08:52 Mi 22.10.2014
Autor: MacMath

Hallo.

Damit ist der Parallelisierbarkeitsbegriff aus der Informatik gemeint.

"Parallelisierbar" bedeutet, dass verschiedene Berechnungen unabhängig (und damit zeitlich parallel) voneinander durchgeführt werden können.

Das ist im Zeitalter von Mehrkern-Prozessoren ein recht wichtiges Kriterium für die Skalierbarkeit von Problemen. Ein nicht parallelisierbarer Algorithmus läuft auf einem 1-Kern PC mit einigen GHz Taktfrequenz (vermutlich, ich ignoriere jetzt weitere Parameter wie RAM, Cache) effizienter als auf einem Supercomputer mit 300000 Kernen mit je 800Mhz (so in etwa sah JUGENE (s.u.) aus).

Die Parallelisierbarkeit beider Verfahren erörtert zum Beispiel schon die Wikipedia:

https://de.wikipedia.org/wiki/Gau%C3%9F-Seidel-Verfahren#Anwendungen
"Das Gauß-Seidel-Verfahren ist inhärent sequentiell, das heißt bevor eine Gleichung aufgelöst werden kann, müssen die Ergebnisse der vorherigen Gleichungen vorliegen. Es ist damit nicht zur Nutzung auf Parallelrechnern geeignet."

und

https://de.wikipedia.org/wiki/Jacobi-Verfahren
"Da die Berechnung einer Komponente der nächsten Näherung unabhängig von den anderen Komponenten ist, ist das Verfahren, im Gegensatz zum Gauß-Seidel-Verfahren, zur Nutzung auf Parallelrechnern geeignet."




(JUGENE  - Forschungszentrum Jülich, zeitweise der schnellste zivil genutzte Supercomputer der Welt, mittlerweile im "Ruhestand")

Viele Grüße
Daniel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Numerik linearer Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de