Parallelschwingkreis < Elektrotechnik < Ingenieurwiss. < Vorhilfe
|
Aufgabe | Welche Schwingkreise existieren im Schaltbild? Geben Sie die zugehörigen Resonanzfrequenzen dieser Schwingkreise an! |
Hi!
Mein Problem liegt bei der Berechnung der Resonanzfrequenz des Parallelschwingkreises.
Ich hätte einfach die Induktivität und die Kapazität in Reihe und die andere Kapazität [mm]C_2[/mm] parallel geschalten.
Danach alles [mm]=0[/mm] gesetzt und die Frequenz ausgerechnet:
[mm]Z=\frac{\frac{1}{j\omega C_2} \cdot (\frac{1}{j\omega C_1}+j\omega L_1)}{\frac{1}{j\omega C_2}+\frac{1}{j\omega C_1}+j\omega L_1}[/mm]
Jetzt also [mm][/mm]
Also:
[mm][/mm]
[mm]0=\frac{1}{j\omega C_2} \cdot (\frac{1}{j\omega C_1}+j\omega L_1)[/mm] usw.
Das ist so leider falsch.
In der Lösung steht: [mm]\omega=\frac{1}{\sqrt{L_1\cdot \frac{C_1\cdot C_2}{C_1+C_2}}}[/mm]
Kann mir jemand erklären wie man darauf kommt?
[Dateianhang nicht öffentlich]
Danke für euere Hilfe schon einmal im voraus.
Valerie
Dateianhänge: Anhang Nr. 1 (Typ: png) [nicht öffentlich]
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:09 Mo 24.09.2012 | Autor: | Infinit |
Hallo Valerie,
bei der Parallelresonanz ist doch der Leitwert des Schwingkreises Null. Du rechnest hier aber mit den Widerständen, setze mal die Leitwerte ein und diese zu Null, dann sollte das Ergebnis rauskommen.
Viele Grüße,
Infinit
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 17:22 Mo 24.09.2012 | Autor: | Valerie20 |
Hallo Infinit,
> bei der Parallelresonanz ist doch der Leitwert des
> Schwingkreises Null. Du rechnest hier aber mit den
> Widerständen, setze mal die Leitwerte ein und diese zu
> Null, dann sollte das Ergebnis rauskommen.
Ach ja, man kann gar nicht so viel lernen, wie man vergessen kann.
Danke für deine Hilfe.
Valerie
|
|
|
|