www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Parameter
Parameter < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Parameter: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:33 Mo 14.11.2011
Autor: mili03

Aufgabe
Unter welchen Voraussetzungen an [mm] f:(a,b)\to[0,\infty] [/mm] wird
[mm] \phi:(a,b)\times[0,2\pi)\to\IR^3, (r,\phi)\mapsto(f(r)\cos(\phi), f(r)\sin\phi, [/mm] r)
eine reguläre Parameterdarstellung?

Hallo,

[mm] D\phi [/mm] muss dazu überall vollen Rang haben: [mm] D\phi=\pmat{f'(r)\cos\phi&-f(r)\sin\phi\\f'(r)\sin\phi&f(r)\cos\phi\\1&0}. [/mm]

Dazu musst f erst einmal stetig differenzierbar sein und weiterhin [mm] f(r)\neq0 [/mm] auf (a,b).

Wir haben gelernt, dass Parameterdarstellung auf einer offenen Menge definiert sind. Aber [mm] [0,2\pi) [/mm] ist nicht offen. Ändert das was?

dankefür Hilfe, mili

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Parameter: Antwort
Status: (Antwort) fertig Status 
Datum: 12:40 Mo 14.11.2011
Autor: fred97


> Unter welchen Voraussetzungen an [mm]f:(a,b)\to[0,\infty][/mm] wird
>  [mm]\phi:(a,b)\times[0,2\pi)\to\IR^3, (r,\phi)\mapsto(f(r)\cos(\phi), f(r)\sin\phi,[/mm]
> r)
>  eine reguläre Parameterdarstellung?
>  Hallo,
>
> [mm]D\phi[/mm] muss dazu überall vollen Rang haben:
> [mm]D\phi=\pmat{f'(r)\cos\phi&-f(r)\sin\phi\\f'(r)\sin\phi&f(r)\cos\phi\\1&0}.[/mm]
>  
> Dazu musst f erst einmal stetig differenzierbar sein und
> weiterhin [mm]f(r)\neq0[/mm] auf (a,b).


Stimmt.


>  
> Wir haben gelernt, dass Parameterdarstellung auf einer
> offenen Menge definiert sind. Aber [mm][0,2\pi)[/mm] ist nicht
> offen. Ändert das was?

Nein

FRED

>  
> dankefür Hilfe, mili
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
        
Bezug
Parameter: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:31 Mo 14.11.2011
Autor: mili03

vielen Dank FRED für Erste Hilfe!

Nun soll [mm] \phi:(0,1)\times[0,2\pi)\to\IR^3, (r,\varphi)\mapsto(r\cos\varphi, r\sin\varphi, [/mm] r) und [mm] f:\IR^3\backslash\{0\}\to\IR, (x,y,z)\mapsto\frac{x}{||x||} [/mm] sein.

Das Oberflächenintegral ist definiert als

[mm] \int_{(0,1)\times[0,2\pi)}^{}f(\phi(r,\varphi))G_\phi(r,\varphi)drd\varphi [/mm]

Dabei ist [mm] G_\phi=\sqrt{2}r \Rightarrow [/mm]
[mm] \int_{(0,1)\times[0,2\pi)}^{}f(\phi(r,\varphi)G_\phi(r,\varphi))drd\varphi=\int_{(0,1)\times[0,2\pi)}^{}\frac{r\cos\varphi}{\sqrt{r^2\cos^2\varphi+r^2\sin^2\varphi+r^2}}\sqrt{2}r drd\varphi [/mm]
[mm] =\int_{(0,1)\times[0,2\pi)}^{}r\cos\varphi drd\varphi=0. [/mm]

Weil die Stammfunktion vom cos -sin ist und dort 0 und [mm] 2\pi [/mm] Nullstellen sind. Stimmt das?

Gruß
mili

Bezug
                
Bezug
Parameter: Antwort
Status: (Antwort) fertig Status 
Datum: 13:36 Mo 14.11.2011
Autor: fred97


> vielen Dank FRED für Erste Hilfe!
>  
> Nun soll [mm]\phi:(0,1)\times[0,2\pi)\to\IR^3, (r,\varphi)\mapsto(r\cos\varphi, r\sin\varphi,[/mm]
> r) und [mm]f:\IR^3\backslash\{0\}\to\IR, (x,y,z)\mapsto\frac{x}{||x||}[/mm]
> sein.
>  
> Das Oberflächenintegral ist definiert als
>  
> [mm]\int_{(0,1)\times[0,2\pi)}^{}f(\phi(r,\varphi))G_\phi(r,\varphi)drd\varphi[/mm]
>  
> Dabei ist [mm]G_\phi=\sqrt{2}r \Rightarrow[/mm]
>  
> [mm]\int_{(0,1)\times[0,2\pi)}^{}f(\phi(r,\varphi)G_\phi(r,\varphi))drd\varphi=\int_{(0,1)\times[0,2\pi)}^{}\frac{r\cos\varphi}{\sqrt{r^2\cos^2\varphi+r^2\sin^2\varphi+r^2}}\sqrt{2}r drd\varphi[/mm]
>  
> [mm]=\int_{(0,1)\times[0,2\pi)}^{}r\cos\varphi drd\varphi=0.[/mm]
>  
> Weil die Stammfunktion vom cos -sin ist und dort 0 und [mm]2\pi[/mm]

Eine Stammfunktion von cos(x) ist sin(x)

und sin(0)=sin(2 [mm] \pi)=0 [/mm]


FRED

> Nullstellen sind. Stimmt das?
>  
> Gruß
>  mili


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de