www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ganzrationale Funktionen" - Parameter von t
Parameter von t < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Parameter von t: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:22 Do 29.03.2007
Autor: Kiuko

Aufgabe
Gegeben ist die Funktion f mit

f(x)=   (die riesen Klammer) x+1   x [mm] \le [/mm] 1
                                            x²+t  x  < 1

x0=1

Bestimmen Sie den Parameter t so, dass f an der Stelle x0 stetig ist

Da habe ich nun leider überhaupt keine Ahnung mehr...
ich hätte die 1 bei x eingesetzt und dann gesehen, was raus kommt,....

aber bei t?

        
Bezug
Parameter von t: Grenzwertbetrachtung
Status: (Antwort) fertig Status 
Datum: 21:33 Do 29.03.2007
Autor: Loddar

Hallo Kiuko!


Der Ansatz ist so schlecht nicht ... Du musst eine Grenzwertbetrachtung für [mm] $x\rightarrow [/mm] 1$ durchführen: einmal von oben her und einmal von unten:

[mm] $\limes_{x\rightarrow 1\uparrow}f_t(x) [/mm] \ = \ [mm] \limes_{x\rightarrow 1\uparrow}(x+1) [/mm] \ = \ ...$

[mm] $\limes_{x\rightarrow 1\downarrow}f_t(x) [/mm] \ = \ [mm] \limes_{x\rightarrow 1\downarrow}(x^2+t) [/mm] \ = \ ...$

Diese beiden Grenzwerte müssen bei geforderter Stetigkeit übereinstimmen. Und aus dieser Gleichheit kannst Du dann $t_$ ermitteln.


Gruß
Loddar


Bezug
                
Bezug
Parameter von t: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:45 Do 29.03.2007
Autor: Kiuko

Ja und der Grenzwert wäre ja dann -1... denn wenn ich für x -1 einsetze kommt ja 0 raus.. aber die vorraussetzung ist ja, dass es größer, gleich 1 ist..

aber dann hätte ich ja 1² +1 und das wäre ja dann 2.. in dem fall -2 für t

Bezug
                        
Bezug
Parameter von t: Antwort
Status: (Antwort) fertig Status 
Datum: 22:06 Do 29.03.2007
Autor: schachuzipus

Hallo,

Obacht!

Du musst in beiden Fällen [mm] x=\red{1} [/mm] "einsetzen".

Die Ausdrücke, die du dann erhältst, müssen gleich sein. Das liefert dir dein t


Gruß

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de