www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - Parameterermittlung
Parameterermittlung < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Parameterermittlung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 22:56 So 26.10.2008
Autor: kushkush

Aufgabe
2. Ermittle die Parameter a und b so, dass der Graph von f nirgends abreisst und nirgends Knickstellen hat, d.h. f ist an jeder Stelle stetig und differenzierbar.
Zeichne den Graphen von f!
[mm] $f(x)=\begin{cases} ax-3, & \mbox{für} \ x \ge 2 \\ x^{2}+b, & \mbox{für} \ x < 2 \end{cases}$ [/mm]

Der Latex-Code wird bei mir nicht dargestellt, deshalb schreibe ich ihn einfach mal so hin:

f:x ->  ax-3    x>=2       und [mm] x^2+b [/mm]      für x<2



gezeichnet ergibt es die nach unten/oben verschobene Normalparabel bis zu 2 und ab dann eine Gerade die -3 schneidet und diejenige Steigung haben sollte, so dass sie die Parabel bei b gerade abnimmt....

[mm] ax-3=b^{2}+b [/mm]

Doch wie weiter? Ich denke dass ich etwas ableiten muss, doch egal welche Seite ich ableite, ich komme nicht auf das richtige Resultat...

Lösungen wären: a=4 b=1

        
Bezug
Parameterermittlung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:22 Mo 27.10.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Parameterermittlung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:35 Mo 27.10.2008
Autor: Denny22


> 2. Ermittle die Parameter a und b so, dass der Graph von f
> nirgends abreisst und nirgends Knickstellen hat, d.h. f ist
> an jeder Stelle stetig und differenzierbar.
>  Zeichne den Graphen von f!
> [mm]f(x)=\begin{cases} ax-3, & \mbox{für} \ x \ge 2 \\ x^{2}+b, & \mbox{für} \ x < 2 \end{cases}[/mm]
>  
> Der Latex-Code wird bei mir nicht dargestellt, deshalb
> schreibe ich ihn einfach mal so hin:
>
> f:x ->  ax-3    x>=2       und [mm]x^2+b[/mm]      für x<2

>  
>
>
> gezeichnet ergibt es die nach unten/oben verschobene
> Normalparabel bis zu 2 und ab dann eine Gerade die -3
> schneidet und diejenige Steigung haben sollte, so dass sie
> die Parabel bei b gerade abnimmt....
>  
> [mm]ax-3=b^{2}+b[/mm]
>
> Doch wie weiter? Ich denke dass ich etwas ableiten muss,
> doch egal welche Seite ich ableite, ich komme nicht auf das
> richtige Resultat...
>
> Lösungen wären: a=4 b=1

Hallo,

Zunächst benötigst Du Werte $a,b$, so dass die zwei Teilfunktionen sich im Punkt $x=2$ berühren. Dazu setzt Du $x=2$ ein und setzt Deine stückweisen Funktionen gleich:

[mm] $2a-3=4+b\quad\Longrightarrow\quad [/mm] 2a-b+7=0$

Okay soweit. Damit die Funktion nun differentierbar ist, muss die Steigung und damit die Ableitung beider stückweiser Funktionsteile im Punkt $x=2$ übereinstimmen. Daher leitest Du beide Teile ab, setzt $x=2$ ein und setzt sie gleich:

[mm] $a=4+b\quad\Longrightarrow\quad [/mm] a-b-4=0$

Jetzt hast Du zwei Gleichungen mit zwei Unbekannten.

$2a-b+7=0$
$a-b-4=0$

Diese musst Du nun lösen. Dazu betrachten wir zunächst die zweite Gleichung

[mm] $a-b-4=0\quad\Longrightarrow\quad [/mm] a=b+4$

Setzen wir jetzt $a=b+4$ in die erste Gleichung ein, so bekommen wir

[mm] $2(b+4)-b+7=0\quad\Longrightarrow\quad [/mm] b=-15$

Setzen wir $b=-15$ in die zweite Gleichung ein, dann bekommen wir

[mm] $a-(-15)-4=0\quad\Longrightarrow\quad [/mm] a=-11$

Damit ist Deine Lösung $(a,b)=(-11,-15)$, also $a=-11$ und $b=-15$. Ich denke, dass das soweit stimmt.

Gruß

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de