www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Parametergleichung
Parametergleichung < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Parametergleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:38 Sa 15.10.2005
Autor: J.W.5

Hallo Leute,

habe hier eine Aufgabe und das Ergebnis, aber überhaupt gar keinen Plan wie man auf das Ergebnis komm.

Aufgabe: Die Lösungsmenge einer Gleichung der Form [mm] ax_{1}+bx_{2}=c (a\not=0 [/mm] oder [mm] b\not=0) [/mm] legt eine Gerade der Zeichenebene fest. Geben sie eine Parametergleichung der Geraden g an, die beschrieben wird durch
[mm] g:2x_{1}+x_{2}=1 [/mm]
Es wäre nett, wenn mir jemand erklären könnte wie man auf das Ergbnis kommt.  

        
Bezug
Parametergleichung: Erklärung
Status: (Antwort) fertig Status 
Datum: 17:57 Sa 15.10.2005
Autor: MathePower

Hallo J.W.5,

> Hallo Leute,
>
> habe hier eine Aufgabe und das Ergebnis, aber überhaupt gar
> keinen Plan wie man auf das Ergebnis komm.
>
> Aufgabe: Die Lösungsmenge einer Gleichung der Form
> [mm]ax_{1}+bx_{2}=c (a\not=0[/mm] oder [mm]b\not=0)[/mm] legt eine Gerade der
> Zeichenebene fest. Geben sie eine Parametergleichung der
> Geraden g an, die beschrieben wird durch
>  [mm]g:2x_{1}+x_{2}=1[/mm]

Forme die Gleichung z.B. nach [mm]x_{2}[/mm] um. Dann erhältst Du [mm]x_{2}\;=\;1\;-\;2\;{x_1}[/mm]

Setzen wir nun für [mm]x_{1}\;=\;t[/mm] ein so folgt:

[mm]x_{2}\;=\;1\;-\;2\;t[/mm]
[mm]x_{1}\;=\;t[/mm]

Dies ist die Parametergleichung der obigen Geraden.

Gruß
MathePower

Bezug
                
Bezug
Parametergleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:13 Sa 15.10.2005
Autor: J.W.5

Dankeschön an Mathepower für die Antwort.
Ich hab es leider aber immer noch nicht verstanden, denn ich habe hier als Lösung stehen: [mm] g:\vec{x}=\vektor{1\\1-}+t\vektor{1-\\2}. [/mm]



Bezug
                        
Bezug
Parametergleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:20 Sa 15.10.2005
Autor: Stefan

Hallo!

Bitte stelle Rückfragen zu einer speziellen Aufgabe demnächst im gleichen Thread. Bei einer neuen Aufgabe sollst du auch einen neuen Thread eröffnen, aber auch nur dann. Okay? :-)

Mathepower hatte ja die folgende Gleichung

[mm] $\vec{x} [/mm] = [mm] \pmat{0 \\ 1} [/mm] + t [mm] \cdot \pmat{1 \\ -2}$. [/mm]

Du dagegen hast die Lösung

[mm] $\vec{x} [/mm] = [mm] \pmat{1 \\ -1} [/mm] + t [mm] \cdot \pmat{-1 \\ 2}$. [/mm]

Beide Parameterdarstellungen beschreiben aber die gleiche Gerade, d.h. beides ist richtig!

Denn schau mal: Multipliziere ich den unteren Richtungsvektor mit $-1$ , so komme ich auf den oberen.

Weiterhin gilt:

[mm] $\pmat{0 \\ 1} [/mm] = [mm] \pmat{1 \\ -1} [/mm] + 1 [mm] \cdot \pmat{-1 \\ 2}$, [/mm]

d.h. die beiden Gerade sind nicht echt parallel, sonder identisch da sie mindestens einen gemeinsamen Punkt haben, nämllich $(0/1)$.

Liebe Grüße
Stefan



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de