www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Parameterisierung
Parameterisierung < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Parameterisierung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:40 Mi 07.11.2012
Autor: sissile

Aufgabe
Man gebe eine Parameterdarstellung des Mantels eines Drehkegels an, der die Höhe h besitzt und dessen Basis den Radius r hat

Nun habe ich mir das ganze mal aufgezeichnet.
Der Mantel eines Kegels ist ein Kreissektor mit der Länge der mantellinie des Kegels als Radius. DIe SPitze des Kegels ist der Mittelpunkt des Kreissektors.
s=  Länge der mantellinie des Kegels = [mm] \sqrt{h^2 + r^2} [/mm]

Eine Kreisparameterisierung [mm] \gamma(t) [/mm] = [mm] \sqrt{ h^2 + r^2} [/mm] * [mm] \vektor{cos t \\ sin t} [/mm]

Nun ist aber nicht  nach den ganze Kreis gefragt. Ich weiß nicht wie ich das weiter mache..

In WIki habe ich gelesen:

> Den Mittelpunktswinkel [mm] \alpha [/mm] des Kreissektors kann man durch eine Verhältnisgleichung ermitteln. Er verhält sich zum 360°-Winkel wie die Kreisbogenlänge 2 [mm] \pi [/mm] r (Umfang des Basiskreises) zum gesamten Umfang eines Kreises mit Radius s.

Woraus sich dann [mm] \alpha [/mm] = r/s * 360° ergibt.
Alles klar, aber wie mache ich da mit meiner Parameterisierung??

        
Bezug
Parameterisierung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:09 Mi 07.11.2012
Autor: leduart

Hallo
ich bin sicher, du sollst das als Fläche in [mm] \IR^3 [/mm] darstellen. nimm die Kegelspitze bei (0,0,0) den Kreis [mm] x^2+y^2=r^2 [/mm] bei z=h und schreib es als [mm] \vektor{x\\y\\z} [/mm] dann brauchst du nur den Zusammenhang des Radius von z
Gruss leduart


Bezug
                
Bezug
Parameterisierung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:03 Do 08.11.2012
Autor: sissile

Hallo
Kannst du mir da vlt eine Seite empfehlen, wo das vorgehen bei solchen Bsp erklärt ist? Ich komme nämlich mit meiner Mitschrift nicht zurrecht

Bezug
                        
Bezug
Parameterisierung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:18 Do 08.11.2012
Autor: leduart

Hallo
nein ein Buch weiss ich nicht. aber kannst du einen Zylindermantel parametrisiern?
[mm] r=\vektor{a*cos\phi\\a*sin\phi,z} [/mm] a=Radius des Zyl, [mm] \phi\in[0,\2\pi] z\in[0,h] [/mm]
du musst doch nur jeden Punkt r=(x,y,z) auf dem Kegel beschreiben da es eine flche, also 2d ist mit 2 Parametern,
also zeichne einen kegel, nimm einen beliebigen Punkt, wie kannst du seine Koordinaten ihn durch Winkel [mm] \phi [/mm] und Höhe h beschreiben bei Gesamthöhe H und Grundkreisradius R
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de