www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Parameterwerteberechnung
Parameterwerteberechnung < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Parameterwerteberechnung: (in einer Ebene)
Status: (Frage) beantwortet Status 
Datum: 12:57 So 13.11.2005
Autor: Freddie

Einen schönen Sonntag an alle:

Ich habe eine Ebene mit einem Punkt (A) und 2 Richtungsvektoren...  [mm] \vec{u} [/mm] und  [mm] \vec{v} [/mm]

Soweit so gut.
1) ich soll den Punkt Konstruieren zur Parameterdarstellung:
  [mm] \overrightarrow{OX} [/mm] =  [mm] \overrightarrow{OA} [/mm] +  [mm] \lambda [/mm] * [mm] \vec{u} [/mm]  +  [mm] \mu [/mm] * [mm] \vec{v} [/mm]

und zwar für:
[mm] \lambda [/mm] = 2,5 und [mm] \mu [/mm] = 1,5
bzw.
[mm] \lambda [/mm] = 2 und [mm] \mu [/mm] = -1

Und dann soll ich den Punkt A bestimmen und der Punkte mit den Ortsvektoren:
1)  [mm] \overrightarrow{OA} [/mm] + [mm] \vec{u} [/mm]
2)  [mm] \overrightarrow{OA} [/mm] + [mm] \vec{v} [/mm]
3)  [mm] \overrightarrow{OA} [/mm] + [mm] \vec{u} [/mm] + [mm] \vec{v} [/mm]

So ich bräuchte dafür Hilfe damit ich auch noch die vielen anderen aufgaben dieser Art erschlagen kann, danke schonmal ...

        
Bezug
Parameterwerteberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:42 So 13.11.2005
Autor: Zwerglein

Hi, Freddie,

> Ich habe eine Ebene mit einem Punkt (A) und 2
> Richtungsvektoren...  [mm]\vec{u}[/mm] und  [mm]\vec{v}[/mm]
>  
> Soweit so gut.
>  1) ich soll den Punkt Konstruieren zur
> Parameterdarstellung:
>    [mm]\overrightarrow{OX}[/mm] =  [mm]\overrightarrow{OA}[/mm] +  [mm]\lambda[/mm] *
> [mm]\vec{u}[/mm]  +  [mm]\mu[/mm] * [mm]\vec{v}[/mm]
>  
> und zwar für:
>  [mm]\lambda[/mm] = 2,5 und [mm]\mu[/mm] = 1,5
>  bzw.
> [mm]\lambda[/mm] = 2 und [mm]\mu[/mm] = -1

"Konstruieren" heißt wohl "zeichnen", stimmt's?

Also: Du skizzierst eine Ebene
(Habt ihr sicher schon gemacht: Freihändig ein großes Parallelogramm zeichnen, das einen Ausschnitt der Ebene verdeutlichen soll.)
Etwa in der Mitte dieser "Ebene" zeichnest Du den Punkt A.
Von diesem ausgehend zeichnest Du die Richtungsvektoren, [mm] \vec{u} [/mm] vielleicht waagrecht nach rechts, sagen wir 2 cm lang, [mm] \vec{v} [/mm] schräg nach oben (am besten nicht senkrecht auf [mm] \vec{u}, [/mm] sondern sagen wir etwa im 60°-Winkel); der muss nicht genauso lang sein wie der andere. (***)

Gut und für den ersten gesuchten Punkt musst Du den Vektor [mm] \vec{u} [/mm] mit 2,5 multiplizieren (in meinem Vorschlag ist er dann 5 cm lang) und daran das 1,5-Fache von [mm] \vec{v} [/mm] addieren. Nun hast Du den gesuchten Punkt gefunden (bzw. "konstruiert")!

Beim zweiten gehst Du analog vor,nur dass Du mit negativen Parametern aufpassen musst!

> Und dann soll ich den Punkt A bestimmen und der Punkte mit
> den Ortsvektoren:
> 1)  [mm]\overrightarrow{OA}[/mm] + [mm]\vec{u}[/mm]

Was Du mit "A bestimmen" meinst, weiß ich nicht! Das soll doch der (längst bekannte!) Aufpunkt der Ebene sein.
Nun: Der Vektor [mm] \overrightarrow{OA} [/mm] geht vom Nullpunkt O zum Punkt A (den wir für die oben skizzierte Ebene ja schon benutzt haben).

Jetzt zeichnest Du noch unterhalb Deiner Ebene (im Abstand von vielleicht 5 cm) einen Punkt, den Du O nennst. Den verbindest Du mit A und hast nun auch  [mm] \overrightarrow{OA} [/mm] gezeichnet (Pfeilspitze nicht vergessen!).

Dann zeichnest Du von O aus den Vektor (Pfeil) der zur Spitze des ersten Richtungsvektors [mm] \vec{u} [/mm] geht.
Damit ist diese Aufgabe gelöst.

>  2)  [mm]\overrightarrow{OA}[/mm] + [mm]\vec{v}[/mm]

Analog zur Aufgabe 1) zeichnest Du jetzt einen Pfeil von O zur Spitze des zweiten Richtungsvektors [mm] \vec{v}. [/mm]
Fertig!

>  3)  [mm]\overrightarrow{OA}[/mm] + [mm]\vec{u}[/mm] + [mm]\vec{v}[/mm]

[mm] \lambda=1 [/mm] und [mm] \mu=1: [/mm] dann hast Du den Punkt, den Du mit O verbinden musst, um den gesuchten Vektor zu skizzieren.

PS: Wenn nicht alles in eine einzige Zeichnung passt, dann skizziere die Ebene von oben (***) halt mehrmals. Dann wird's auch übersichtlicher!

mfG!
Zwerglein


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de