www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Parametrisierung
Parametrisierung < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Parametrisierung: Tipp
Status: (Frage) beantwortet Status 
Datum: 18:24 Fr 17.06.2011
Autor: stffn

Aufgabe
Parametrisieren Sie die folgende Menge als Kurve [mm] \vec{c}:[0,1]\to\IR^2: [/mm]

[mm] C:=\{(x,y)^T\in\IR^2|4(x-1)^2+(y-3)^2=16\}. [/mm]

Hallo zusammen,

ich wollt diese Aufgabe rechnen, habe dann aber gemerkt dass ich garnicht genau weiß was 'parametrisieren' eigentlich bedeutet. Kann man es als 'Abhängigmachen von einer Variablen' bezeichnen?
Und was sagt mir der Def.-bereich von [mm] \vec{c}? [/mm]
Entschuldigt das ich keinen Lösungsvorschlag habe, aber ich weiß auch garnicht wie ich überhaupt anfangen soll. Ich weiß nur dass die Menge eine Ellipse ist.

Ich wünsche dennoch ein schönes Wochenende und hoffe, dass mir jemand helfen kann:=)

        
Bezug
Parametrisierung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:40 Fr 17.06.2011
Autor: MathePower

Hallo stffn,

> Parametrisieren Sie die folgende Menge als Kurve
> [mm]\vec{c}:[0,1]\to\IR^2:[/mm]
>  
> [mm]C:=\{(x,y)^T\in\IR^2|4(x-1)^2+(y-3)^2=16\}.[/mm]
>  Hallo zusammen,
>  
> ich wollt diese Aufgabe rechnen, habe dann aber gemerkt
> dass ich garnicht genau weiß was 'parametrisieren'
> eigentlich bedeutet. Kann man es als 'Abhängigmachen von
> einer Variablen' bezeichnen?


Da es sich hier um eine Kurve handelt,
werden alle Punkte dieser Kurve durch einen
einzigen Parameter abgelaufen.


>  Und was sagt mir der Def.-bereich von [mm]\vec{c}?[/mm]
>  Entschuldigt das ich keinen Lösungsvorschlag habe, aber
> ich weiß auch garnicht wie ich überhaupt anfangen soll.
> Ich weiß nur dass die Menge eine Ellipse ist.
>  
> Ich wünsche dennoch ein schönes Wochenende und hoffe,
> dass mir jemand helfen kann:=)


Gruss
MathePower

Bezug
                
Bezug
Parametrisierung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:10 Sa 18.06.2011
Autor: stffn

OK, das macht Sinn.

Aber wie gehe ich daran?
Muss ich das in Polarkoordinaten machen?

Und stimmt es, dass der Mittelpunkt bei [mm] M_0(x,y)=(1,3) [/mm] liegt, weil [mm] x\in[-1,3] [/mm] und [mm] y\in[-1,7] [/mm] ist?

Wenn dem so ist, kann man daraus folgern, dass die Hauptachse der Ellipse um 90° bzgl. der x-Achse gedreht ist?
[mm] \Rightarrow \vec{c}(t)=\vektor{1-b*sin(t) \\ 3+a*cos(t)} [/mm] mit a=4 und b=2?

Das ist bestimmt weit daneben, aber im Moment das einzige was mir einfällt (mit Hilfe von Wiki...)
Ich danke euch!

Bezug
                        
Bezug
Parametrisierung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:21 Sa 18.06.2011
Autor: abakus


> OK, das macht Sinn.
>  
> Aber wie gehe ich daran?
>  Muss ich das in Polarkoordinaten machen?
>
> Und stimmt es, dass der Mittelpunkt bei [mm]M_0(x,y)=(1,3)[/mm]
> liegt, weil [mm]x\in[-1,3][/mm] und [mm]y\in[-1,7][/mm] ist?

Ja.

>  
> Wenn dem so ist, kann man daraus folgern, dass die
> Hauptachse der Ellipse um 90° bzgl. der x-Achse gedreht
> ist?

Ja.

>  [mm]\Rightarrow \vec{c}(t)=\vektor{1-b*sin(t) \\ 3+a*cos(t)}[/mm]
> mit a=4 und b=2?
>  
> Das ist bestimmt weit daneben, aber im Moment das einzige
> was mir einfällt (mit Hilfe von Wiki...)
>  Ich danke euch!

Hallo,
ich interpretiere die Aufgabenstellung so, dass der Parameter nur von 0 bis 1 wandern darf. Bei dir würde er bis [mm] 2\pi [/mm] gehen, um die kompletten Ellipse auszudrücken.
Gruß Abakus


Bezug
                                
Bezug
Parametrisierung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:10 Sa 18.06.2011
Autor: stffn

Alles klar, das würde also heißen, dass mein Ergebnis einfach noch kurz modifiziert werden müsste:

[mm] \vec{c}(t)=\vektor{1-2\cdot{}sin(2\pi*t) \\ 3+4\cdot{}cos(2\pi*t)}. [/mm]

Richtig?

Können wir noch kurz, dem Verständnis wegen, das hier
[mm] F(\vec{x})=x^2+y^2 [/mm] mit [mm] \vec{c}:[0,\infty]\to\IR^2 [/mm]
parametrisieren? Wäre sehr freundlich, weil so richtig habe ich die Vorgehensweise noch nicht verstanden.

Könnte das so oder so ähnlich aussehen?:

[mm] c(t)=cos^2(t)+sin^2(t) [/mm]

Vielen, vielen Dank!

Bezug
                                        
Bezug
Parametrisierung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:25 Sa 18.06.2011
Autor: leduart

Hallo

> Alles klar, das würde also heißen, dass mein Ergebnis
> einfach noch kurz modifiziert werden müsste:
>  
> [mm]\vec{c}(t)=\vektor{1-2\cdot{}sin(2\pi*t) \\ 3+4\cdot{}cos(2\pi*t)}.[/mm]
>  
> Richtig?

ja.

> Können wir noch kurz, dem Verständnis wegen, das hier
> [mm]F(\vec{x})=x^2+y^2[/mm] mit [mm]\vec{c}:[0,\infty]\to\IR^2[/mm]
>  parametrisieren? Wäre sehr freundlich, weil so richtig
> habe ich die Vorgehensweise noch nicht verstanden.

Hier hast du ja keine Kurve? sondern eine 2d Funktion
Kurven sind nur die "Höhenlinien F=const=r
was ist denn die exakte Aufgabe?


Bezug
                                                
Bezug
Parametrisierung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:53 Sa 18.06.2011
Autor: stffn

Naja in der Eigentlichen Aufgabe soll ich das Wegintegral der Funktion
[mm] F:\IR^2\to\IR, F(\vec{x})=|\vec{x}|^2 [/mm] längs [mm] \vec{c} [/mm] berechnen.

Meine Überlegung:

[mm] F(\vec{x})=|\vektor{x \\ y}|^2=\wurzel{x^2+y^2}^2=x^2+y^2. [/mm]

Und um das längs c zu integrieren, wollte ich es erstmal parametrisieren, dass ich nur noch nach der Variablen t integrieren muss.



Bezug
                                                        
Bezug
Parametrisierung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:13 Sa 18.06.2011
Autor: leduart

Hallo
Dann sieh dir erstmal an wie ein Wegintegral aussieht, bzw ein Kurvenintegral! Kannst du das hinschreiben?  [mm] c=\vektor{x(t)\\y(t)} [/mm] kennst du ja, dann c in F einsetzen und c' berechnen.
Gruss leduart


Bezug
                                                                
Bezug
Parametrisierung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:15 So 19.06.2011
Autor: stffn

Also ist es dann richtig das so zu machen:

[mm] c(t)=r^2(cos^2t*sin^2t)=r^2 [/mm]

[mm] \Rightarrow [/mm] c'(t)=0

Also ist das Integral von 0=C?

Bezug
                                                                        
Bezug
Parametrisierung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:09 So 19.06.2011
Autor: leduart

Hallo ich dachte du sollst die fkt [mm] F(x,y)=x^2+y^2 [/mm] längs der kurve aus dem ersten post integrieren?
c(t) hattest du doch richtig als Vektor angegeben?
schreib bitte mal  auf
1.die Formel für das Kurvenintegral auf.
[mm] 2.F(\vec{c(t}) [/mm]
3. [mm] \vec{c'(t} [/mm]
[mm] 4.|\vec{c'(t}| [/mm]
dann 2 und 4 in 1 einsetzen!
Gruss leduart


Bezug
                                                                                
Bezug
Parametrisierung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:33 Mo 20.06.2011
Autor: stffn

Aufgabe
Berechne das Wegintegral der Funktion
$ [mm] F:\IR^2\to\IR, F(\vec{x})=|\vec{x}|^2 [/mm] $ längs $ [mm] \vec{c} [/mm] $ berechnen.

Hallo nochmal,
also die Aufgabe aus dem ersten Post hat nichts mehr mit der Aufgabe zu tun.
Ich hab sie nochmal oben aufgeschrieben.

Also die Formel für das Wegintegral ist ja

[mm] \integral_{\vec{x}}^{}{F ds}=\integral_{\vec{x}}^{}{F(x(t))*\vec{x}'dt}. [/mm]

mit [mm] F(\vec{x})=|\vec{x}|^2 [/mm]  und  [mm] \vec{c}:[0,\infty]\to\IR. [/mm]

Ich muss doch parametrisieren oder nicht?


Bezug
                                                                                        
Bezug
Parametrisierung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:25 Mo 20.06.2011
Autor: leduart

Hallo
wie ist denn [mm] \vec{c(t)} [/mm] gegeben? was du schreibst $ [mm] \vec{c}:[0,\infty]\to\IR. [/mm] $ ist nicht eine Beschreibung einer Kurve
dein Integral seh ich auch nicht, was du mit x(t) meinst, das soll wohl [mm] \vec{c(t)} [/mm] sein dann steht im integral aber [mm] F(\vec{c(t)})*||\vec{c'(t)}//_2 [/mm]
was weist du über c?
gruss leduart


Bezug
                                                                                                
Bezug
Parametrisierung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:44 Mi 22.06.2011
Autor: stffn

Vielen Dank nochmal für die Hilfe, ich habe die Aufgabe jetzt gelöst. Ich habe nochmal beim Tutor nachgefragt, und sie war so gestellt, dass man c(t) von einer anderen Aufgabe nehmen sollte. Da das aber nicht aus der Aufgabenstellung hervorging (laut Tutor wurde es wohl einfach vergessen zu erwähnen), dachte ich das ich da irgendwas nicht verstanden habe.
Aber dann ist jetzt alles klar.
Entschuldigt das Missverständnis bitte.
Danke trotzdem für die Mühe, schöne Grüße.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de