www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Parametrisierung
Parametrisierung < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Parametrisierung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:47 Di 19.07.2011
Autor: dude123

Aufgabe
Parametrisieren Sie die Rotationsfläche, die im R³ entsteht, wenn die Gerade
y = 2x − 1 für x [mm] \in [/mm] [1, 3] um die y-Achse rotiert.

Hi Leute!
Also ich habe noch etwas Probleme beim Parametrisieren. Ich weiß bei dieser Aufgabe überhaupt nicht wie ich da heran gehen soll.
Laut Musterlösung ergibt sich die Parametrisierung

[mm] \vektor{r cos \alpha \\ 2r-1 \\ r sin \alpha } [/mm] mit [mm] \alpha \in [0,2\pi] [/mm] und
r [mm] \in [/mm] [1,3]

Ich verstehe nicht wie man auf  diese Lösung kommt, ich meine hier hat man ja offensichtlich Zylinderkoordinaten verwendet und mir leuchtet auch ein warum x = r cos [mm] \alpha [/mm] und z = r sin [mm] \alpha [/mm] , aber wieso genau ist y=2*r-1 ? da hat man dann ja für x = r eingesetzt aber x soll doch r cos [mm] \alpha [/mm] sein? Hoffe da kann mir jemand weiter helfen.
mfG

        
Bezug
Parametrisierung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:22 Di 19.07.2011
Autor: leduart

Hallo
es wird doch um die y-Achse gedreht, d.h. auf dem ganzen Kreis [mm] x^2+z^2=r [/mm] ist y gleich groß, und so groß wie bei z=0, x=r
Gruss leduart


Bezug
        
Bezug
Parametrisierung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:32 Di 19.07.2011
Autor: Al-Chwarizmi


> Parametrisieren Sie die Rotationsfläche, die im R³
> entsteht, wenn die Gerade
>  y = 2x − 1 für x [mm]\in[/mm] [1, 3] um die y-Achse rotiert.


Eigentlich sollte hier noch stehen, dass y = 2x - 1
als Gleichung einer Geraden in der x-y-Ebene zu
verstehen ist !

Andernfalls stellt nämlich diese Gleichung im [mm] \IR^3 [/mm] nicht
eine Gerade, sondern eine Ebene dar.

LG

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de