www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrieren und Differenzieren" - Parametrisierung und Grenzen
Parametrisierung und Grenzen < Integr.+Differenz. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrieren und Differenzieren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Parametrisierung und Grenzen: Aufgabenstellung
Status: (Frage) beantwortet Status 
Datum: 19:59 Mi 13.07.2016
Autor: amd-andy

Hallo Experten,

wie kann ich mir erklären, wie wir die Grenzen bei der zweiten Parametrisierung in der folgenden Aufgabe verändern?

[mm] \integral_{0}^{1}{\bruch{x*sin(\pi*x^2)}{\wurzel{1-(cos(\pi*x^2))^2}} dx}= [/mm]

Substitution von [mm] cos(\pi*x^2) [/mm]

[mm] -\bruch{1}{2*\pi}\integral_{0}^{1}{\bruch{u'}{\wurzel{1-u^2}} du} [/mm]

bis dahin alles klar soweit und nun kommt:

[mm] -\bruch{1}{2*\pi}\integral_{1}^{-1}{\bruch{dt}{\wurzel{1-t^2}}*t} [/mm]

Diese Stelle macht mir Probleme! Warum ändere ich die Grenzen zu 1 bis -1? Warum in dieser Reihenfolge? und was passiert mit dem "t" am Ende?
Es geht wie folgt weiter (was ich auch wieder nachvollziehen kann):

[mm] -\bruch{1}{\pi}(arcsin(1)-arcsin(1)=-\bruch{1}{\pi}(-\bruch{\pi}{2}-\bruch{\pi}{2})=\bruch{1}{2} [/mm]

Danke für eure Hilfe!

        
Bezug
Parametrisierung und Grenzen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:50 Mi 13.07.2016
Autor: amd-andy

unten muss es natürlich heißen:
$ [mm] -\bruch{1}{2*\pi}(arcsin(-1)-arcsin(1)=-\bruch{1}{2*\pi}(-\bruch{\pi}{2}-\bruch{\pi}{2})=\bruch{1}{2} [/mm] $

Bezug
        
Bezug
Parametrisierung und Grenzen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:24 Mi 13.07.2016
Autor: chrisno


> Hallo Experten,
>  
> wie kann ich mir erklären, wie wir die Grenzen bei der
> zweiten Parametrisierung in der folgenden Aufgabe
> verändern?
>  
> [mm]\integral_{0}^{1}{\bruch{x*sin(\pi*x^2)}{\wurzel{1-(cos(\pi*x^2))^2}} dx}=[/mm]
>  
> Substitution von [mm]cos(\pi*x^2)[/mm]

Ordentliches Aufschreiben hilft:
Substitution [mm]\cos(\pi*x^2) = u[/mm]
Damit [mm] $\br{du}{dx}=-2*\pi*x*\sin(\pi*x^2)$ [/mm]
[mm] Umgeformt:$dx=\br{du}{2*\pi*x*\sin(\pi*x^2)}$ [/mm]
unter dem Integral eingesetzt: [mm]\integral {\bruch{x*sin(\pi*x^2)}{\wurzel{1-u^2}}\br{-du}{2*\pi*x*\sin(\pi*x^2)} }[/mm]
aufgeräumt:[mm]-\br{1}{2\pi} \integral \br{1}{\wurzel{1-u^2}}du[/mm]

>  
> [mm]-\bruch{1}{2*\pi}\integral_{0}^{1}{\bruch{u'}{\wurzel{1-u^2}} du}[/mm]
>  
> bis dahin alles klar soweit und nun kommt:

Das soweit alle klar ist, zweifle ich an. Was soll das $u'$?

>  
> [mm]-\bruch{1}{2*\pi}\integral_{1}^{-1}{\bruch{dt}{\wurzel{1-t^2}}*t}[/mm]
>  
> Diese Stelle macht mir Probleme! Warum ändere ich die
> Grenzen zu 1 bis -1?

kommt weiter unten

> Warum in dieser Reihenfolge? und was
> passiert mit dem "t" am Ende?

Was soll der Unsinn? Du kannst die Integrationsvariable umbenennen, warum nennst Du sie nicht direkt t, sondern erst einmal u? Hinter das t am Ende setzt Du den Cursor und dann drückst Du einmal Backspace. Dann ist es weg und die Umformung gelungen (nicht aus dem falschen vorigen)

Bei der Substitution werden auch die Grenzen geändert. Beim unbestimmten Integral fällt das nicht auf, wenn man am Ende zurücksubstituiert auch nicht.

In der Regel aber musst Du die Grenzen a und b durch u(a) und u(b) ersetzen. In diesem Fall wird die untere Grenze 0 durch [mm] $\cos(\pi*0^2)=1$ [/mm] und die obere Grenze 1 durch [mm] $\cos(\pi*1^2)=-1$ [/mm]
ersetzt.

>  Es geht wie folgt weiter (was ich auch wieder
> nachvollziehen kann):
>  
> [mm]-\bruch{1}{\pi}(arcsin(1)-arcsin(1)=-\bruch{1}{\pi}(-\bruch{\pi}{2}-\bruch{\pi}{2})=\bruch{1}{2}[/mm]
>  
> Danke für eure Hilfe!

Bitteschön

Bezug
                
Bezug
Parametrisierung und Grenzen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:39 Mi 13.07.2016
Autor: amd-andy

Hallo Chrisno,

du hast natürlich vollkommen recht - sauberes Aufschreiben hilft.  Dann hätte ich auch bemerkt, dass es nicht  u' heißen muss sondern 1.
Ich schwöre aber, es steht so in meiner Musterlösung der Prüfung (sowohl das u' als auch das t am Ende), doch auch unsere Profs sind nicht perfekt.

Das mit den Grenzen habe ich jetzt hoffentlich verstanden! Danke dafür!

Andy

Bezug
                        
Bezug
Parametrisierung und Grenzen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:54 Mi 13.07.2016
Autor: chrisno

Schreib es richtig auf und bring es dem Professor. Die meisten bedanken sich für die Korrektur.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrieren und Differenzieren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de