www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Parsevalsche Gleichung kontr.
Parsevalsche Gleichung kontr. < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Parsevalsche Gleichung kontr.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:50 Mo 26.10.2009
Autor: csak1162

Aufgabe
Kontrollieren Sie die Parsevalsche Gleichung für die
Funktion f(x) = -|x| für x [mm] \in [-\pi,\pi] [/mm]

Meine Fragen dazu:

1. wie geht man an so eine aufgabe heran, gibt es ein schema wie
   man vorgeht um das zu lösen.

2. also irgendwie hab ich in meinem skriptum was mit [mm] c_{0},c_{k} [/mm] gefunden,
    in meinem Skriptum steh [mm] c_{0} [/mm] ist 1.

aber ich habe die Lösung zu dieser aufgabe da steht [mm] c_{0} [/mm] ist [mm] \pi/2 [/mm]




danke lg



        
Bezug
Parsevalsche Gleichung kontr.: Antwort
Status: (Antwort) fertig Status 
Datum: 12:30 Mo 26.10.2009
Autor: fred97

Schau mal hier:

            []http://de.wikipedia.org/wiki/Parsevalsche_Gleichung

FRED

Bezug
                
Bezug
Parsevalsche Gleichung kontr.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:35 Mo 26.10.2009
Autor: csak1162

okay ich hab das jschon gelesen und auch 2, 3 andere seiten dazu

aber wie kommt man darauf dass [mm] c_{0} [/mm] = 1 ist

ich hab stehen im Skriptum

[mm] c_{k} [/mm] = [mm] A_{k}/2 [/mm] + [mm] B_{k}/2i [/mm]

und [mm] c_{0} [/mm] = 1



???

und wie rechnet man so ne aufgabe, das kontrollieren?

danke lg




Bezug
                        
Bezug
Parsevalsche Gleichung kontr.: Antwort
Status: (Antwort) fertig Status 
Datum: 13:43 Mo 26.10.2009
Autor: fred97

Zunächst bestimmst Du die zu f geh. Fourierreihe

                      [mm] $\summe_{n= - \infty}^{\infty}c_n* e^{inx}$ [/mm]

"Kontrollieren" bedeutet: schau nach, ob wirklich

                 [mm] $\summe_{n= - \infty}^{\infty}|c_n|^2 [/mm] = [mm] \bruch{1}{2 \pi}\integral_{- \pi}^{\pi}{|f(x)|^2 dx} [/mm]

ist.

FRED

Bezug
                                
Bezug
Parsevalsche Gleichung kontr.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:56 Mo 26.10.2009
Autor: csak1162

Also ich habe [mm] A_{0} [/mm] = [mm] \pi/2 [/mm]

und [mm] A_{k} [/mm] = [mm] \bruch{1}{2\pi}\integral_{-\pi}^{\pi}{|x|e^{ikx} dx} [/mm] = ...

und komme dann auf [mm] \bruch{1}{\pi}(\bruch{\pi*e^{ikx}}{ik}+\bruch{e^{ikx}}{k^{2}}) [/mm] in den granzen 0 bis [mm] \pi [/mm]

wenn ich dann einsetze komme ich nicht mehr weiter

was ist z.B

[mm] e^{ik\pi}/ik [/mm] ???



danke lg

Bezug
                                        
Bezug
Parsevalsche Gleichung kontr.: Antwort
Status: (Antwort) fertig Status 
Datum: 14:58 Mo 26.10.2009
Autor: fred97

$ [mm] e^{ik \pi} [/mm] = cos(k [mm] \pi) [/mm] +i sin(k [mm] \pi) [/mm] = cos(k [mm] \pi) [/mm] = [mm] (-1)^k$ [/mm]

FRED

Bezug
                                                
Bezug
Parsevalsche Gleichung kontr.: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 15:13 Mo 26.10.2009
Autor: csak1162

ich komme dann auf

[mm] \bruch{e^{ik\pi}}{ik} [/mm] + [mm] \bruch{e^{ik\pi}}{\pi*k^{2}} [/mm] - [mm] \bruch{1}{\pi*k^{2}} [/mm]

ich galube da ist irgendwas falsch aber ????


danke lg

Bezug
                                                        
Bezug
Parsevalsche Gleichung kontr.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:40 Mo 26.10.2009
Autor: csak1162

weiß jemand hier weiter???

danke lg


Bezug
                                                        
Bezug
Parsevalsche Gleichung kontr.: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Mi 28.10.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
                                
Bezug
Parsevalsche Gleichung kontr.: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 08:19 Fr 30.10.2009
Autor: csak1162

wo in der Fourierreihe tauchen diese [mm] c_{k} [/mm] auf???

f(x) = [mm] A_{0} [/mm] + [mm] \summe_{k=1}^{\infty} (c_{k}e^{ik*\pi*x/L}+c_{-k}e^{-ik*\pi*x/L}) [/mm] = [mm] \summe_{k=-\infty}^{\infty}(c_{k}e^{ik*\pi*x/L} [/mm]


mit [mm] c_{k} [/mm] = [mm] A_{k}/2 [/mm] + [mm] B_{k}/(2i) [/mm]

dann hab ich noch irgendwas mit

[mm] c_{k} [/mm] = [mm] 1/(2L)*\integral_{-L}^{L}{f(x)e_{-k}(x) dx} [/mm]




welche formel muss man für die [mm] c_{k} [/mm] hernehmen

oder kann mir jemand beim beispiel vielleicht

für [mm] c_{k} [/mm] den anfang hinschreiben, oder irgendwas




BITTE

danke lg

Bezug
                                        
Bezug
Parsevalsche Gleichung kontr.: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 Fr 30.10.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de