www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionalanalysis" - Part. Integration abschätzen
Part. Integration abschätzen < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Part. Integration abschätzen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 13:41 Di 29.05.2007
Autor: Dhana

Aufgabe
Seien [mm]x, y \in \IR^n (n \ge 1)[/mm] mit [mm]x + ty \not= 0 \forall t \in [0, 1][/mm] und sei [mm]1 < p < \infty[/mm]. Mit [mm]|.|[/mm] werde die Euklidische Norm auf [mm]\IR^n[/mm] bezeichnet und mit xy das Skalarprodukt von x und y.

a) Benutzen Sie die partiellen Integrationsformeln

[mm]|x + y|^p = |x|^p + \integral_{0}^{1}{\bruch{\partial}{\partial t} |x + ty|^p dt}[/mm] und
[mm]\bruch{\partial}{\partial t} |x + ty|^p = \bruch{\partial}{\partial t} |x + ty|^p _{|_{t=0}} + \integral_{0}^{t}{\bruch{\partial^2}{\partial s^2} |x + sy|^p ds}[/mm]

um zu zeigen, dass gilt:

[mm]|x + y|^p = |x|^p + p|x|^{p-2}xy + p \integral_{0}^{1}{}\integral_{0}^{t}{|x+sy|^{p-2} [|y|^2 + (p-2)(y \bruch{x + sy}{|x + sy|})^2] ds dt}[/mm]

b) Zeigen Sie, dass eine von x und y unabhängige positive Konstante c existiert, so dass gilt:

[mm]|x + y|^p \ge |x|^p + p|x|^{p-2}xy + cp|y|^2 \integral_{0}^{1}{\integral_{0}^{t}{|x + sy|^{p-2} ds}dt}[/mm]

Hinweis: Unterscheiden Sie die Fälle [mm]p \ge 2[/mm] und [mm]p < 2[/mm]

c) Zeigen Sie, dass eine von x und y unabhängige positive Konstante [mm]c'[/mm] existiert, so dass gilt:

[mm]\integral_{0}^{1}{\integral_{0}^{t}{|x + sy|^{p-2} ds} dt} \ge c' (|x| + |x+y|)^{p-2}[/mm]

Hinweis: Unterscheiden Sie wieder die Fälle [mm]p \ge 2[/mm] und [mm]p < 2[/mm] und versuchen Sie im Fall [mm]p \ge 2[/mm] die Existenz der Konstanten indirekt zu zeigen.

Ich muss nur die Aufgabe c) machen, habe aber alles angegeben, falls man die vorherigen Ergebnisse nutzen kann. Erstmal hab ich integriert:

[mm]\integral_{0}^{1}{\integral_{0}^{t}{|x + sy|^{p-2}ds}dt} = \integral_{0}^{1}{\bruch{1}{|y|(p-1)} [|x + ty|^{p-1} - |x|^{p-1}] dt} = \bruch{1}{|y|^2(p-1)p} |x + y|^p - \bruch{1}{|y|(p-1)}|x|^(p-1) - \bruch{1}{|y|^2(p-1)p}|x |^p \ge \bruch{c}{|y|^2} (|x + y|^p - |x|^p) \ge c (\bruch{|x + y|^p}{|x + y|^2 -|x|^2} - \bruch{|x|^p}{|x + y|^2 -|x|^2}) = c (\bruch{|x + y|^p - |x|^p}{|x + y|^2 -|x|^2}) [/mm]

Ähm ja, jetzt noch das p und die 2 aus der Klammer ziehen, aus dem Minus ein Plus und fertig. Also kurz ich komm nicht weiter, weiß nichtmal ob die Abschätzungen bis dahin richtig und zielführend sind, hoffe mir kann jemand weiterhelfen? ;)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Part. Integration abschätzen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:56 Di 29.05.2007
Autor: Dhana

Ich hab mir die Aufgabe nochmal angeschaut, b) und c) benötigt man noch für Teilaufgabe d), die ich weggelassen habe, also wird c) wohl unabhängig von a) und b) funktionieren, wenn ich nur wüßte wie :(

Bezug
        
Bezug
Part. Integration abschätzen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 02:20 Do 31.05.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de