www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Partialbruchentw. Cotangens
Partialbruchentw. Cotangens < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partialbruchentw. Cotangens: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:45 Mi 21.01.2009
Autor: MacMath

Aufgabe
[Dateianhang nicht öffentlich]

Wir sollen diese Aussage mit der Partialbruchentwicklung des Cotangens zeigen.

Ich "sehe" ansatzweise wohin ich möchte, komme aber nicht wirklich weiter.

Ich habe durch
[mm]\left(\pi cot(\pi z)\right)^2=\left(\bruch{\pi cos(\pi z)}{sin(\pi z)} \right)^2=\left( \bruch{\pi}{sin(\pi z)} \right)^2*{cos^2(\pi z)[/mm]

etwas Ählichkeit erzeugt, aber komme mit Umformen nicht weiter, mein größtes Problem ist das Quadrat.

Gruß Daniel

Dateianhänge:
Anhang Nr. 1 (Typ: PNG) [nicht öffentlich]
        
Bezug
Partialbruchentw. Cotangens: Antwort
Status: (Antwort) fertig Status 
Datum: 13:54 Mi 21.01.2009
Autor: fred97

Wenn ich Dich richtig verstanden habe, darfst Du die Partialbruchzerlegung von Kotangens verwenden.

Diese lautet:


$ [mm] \pi cot(\pi [/mm] z) = [mm] \bruch{1}{z} [/mm] + [mm] \summe_{n= - \infty}^{-1}( \bruch{1}{z+n} [/mm] - [mm] \bruch{1}{n}) [/mm] + [mm] \summe_{n= 1}^{\infty}( \bruch{1}{z+n} [/mm] - [mm] \bruch{1}{n} [/mm] ) $


für z $ [mm] \in \IC [/mm] $ \  $ [mm] \IZ [/mm] $


Wenn Du nun


     $(cot z)' = -(sin [mm] z)^{-2}$ [/mm]

beachtest, erhälst Du das Gewünschte.


FRED

Bezug
                
Bezug
Partialbruchentw. Cotangens: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:14 Mi 21.01.2009
Autor: MacMath


>
> [mm]\pi cot(\pi z) = \bruch{1}{z} + \summe_{n= - \infty}^{-1}( \bruch{1}{z+n} - \bruch{1}{n}) + \summe_{n= 1}^{\infty}( \bruch{1}{z+n} - \bruch{1}{n} )[/mm]

>

>
> für z [mm]\in \IC[/mm] \  [mm]\IZ[/mm]

>

Ja, nach etwas umformen stimmt das mit unserem Script überein    

>
> Wenn Du nun
>
>
> [mm](cot z)' = -(sin z)^{-2}[/mm]
>  
> beachtest, erhälst Du das Gewünschte.

Tut mir leid ich versteh nicht ganz was mir die Ableitung hier bringt. Mein Problem bestand ja darin, dass ich ein Quadrat habe, und wenn ich dort die Summe einsetze kommt ein sehr umständlicher Term heraus der nicht danach aussieht als würde er was bringen.

>  
>
> FRED


Bezug
                        
Bezug
Partialbruchentw. Cotangens: Antwort
Status: (Antwort) fertig Status 
Datum: 14:21 Mi 21.01.2009
Autor: fred97

Es gilt:

[mm] (\bruch{\pi}{sin(\pi z)})^2 [/mm] =
$( [mm] \pi cot(\pi [/mm] z))' = [mm] (\bruch{1}{z} [/mm] + [mm] \summe_{n= - \infty}^{-1}( \bruch{1}{z+n} [/mm] - [mm] \bruch{1}{n}) [/mm] + [mm] \summe_{n= 1}^{\infty}( \bruch{1}{z+n} [/mm] - [mm] \bruch{1}{n} [/mm] ))' $

und

[mm] $(\bruch{1}{z} [/mm] + [mm] \summe_{n= - \infty}^{-1}( \bruch{1}{z+n} [/mm] - [mm] \bruch{1}{n}) [/mm] + [mm] \summe_{n= 1}^{\infty}( \bruch{1}{z+n} [/mm] - [mm] \bruch{1}{n} [/mm] ))' $

erhälst Du durch gliedweise Differentiation (wegen der lokal gleichmäßigen Konvergenz)

FRED

Bezug
                                
Bezug
Partialbruchentw. Cotangens: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:11 Do 22.01.2009
Autor: MacMath


> Es gilt:
>  
> [mm](\bruch{\pi}{sin(\pi z)})^2[/mm] =
> [mm]( \pi cot(\pi z))' = (\bruch{1}{z} + \summe_{n= - \infty}^{-1}( \bruch{1}{z+n} - \bruch{1}{n}) + \summe_{n= 1}^{\infty}( \bruch{1}{z+n} - \bruch{1}{n} ))'[/mm]
>

ich komme auf

[mm]-(\bruch{\pi}{sin(\pi z)})^2[/mm] =
[mm]( \pi cot(\pi z))'[/mm] kann das sein?

Bezug
                                        
Bezug
Partialbruchentw. Cotangens: Antwort
Status: (Antwort) fertig Status 
Datum: 22:40 Do 22.01.2009
Autor: MathePower

Hallo MacMath,

> > Es gilt:
>  >  
> > [mm](\bruch{\pi}{sin(\pi z)})^2[/mm] =
> > [mm]( \pi cot(\pi z))' = (\bruch{1}{z} + \summe_{n= - \infty}^{-1}( \bruch{1}{z+n} - \bruch{1}{n}) + \summe_{n= 1}^{\infty}( \bruch{1}{z+n} - \bruch{1}{n} ))'[/mm]
> >
>
> ich komme auf
>  
> [mm]-(\bruch{\pi}{sin(\pi z)})^2[/mm] =
> [mm]( \pi cot(\pi z))'[/mm] kann das sein?  


Ja, das hab ich auch heraus.


Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de