www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Partialbruchzerlegng
Partialbruchzerlegng < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partialbruchzerlegng: doppelte Nullstelle
Status: (Frage) beantwortet Status 
Datum: 14:26 Mi 11.01.2006
Autor: elko

Hi 2 all

Würde gerne das integral  [mm] \integral [/mm] {  [mm] \bruch{1}{x^2(x^2+9)} [/mm] dx}

mit der Partialbruch zerlegung Lösen !

Dazu brauche ich ja die koeffitenten AB ...

Weis jetzt nur nicht wie ich die nullstellen zuordnen soll und warum!

Hat [mm] x^2(x^2+9) [/mm] = [mm] x^4+9x^2 [/mm] jetzt ne dreifache nullstelle oder ne zweifache?

oder ne vierfache, woher wisst ihr das?  x1=x2=x3=0

weil ist ja ein polynom 4 ten grades


Danke im voraaus Daniel

        
Bezug
Partialbruchzerlegng: Hinweise
Status: (Antwort) fertig Status 
Datum: 14:44 Mi 11.01.2006
Autor: Roadrunner

Hallo elko!


Der Nenner Deiner Funktion hat in [mm] $\IR$ [/mm] eine doppelte Nullstelle bei [mm] $x_{1/2} [/mm] \ = \ 0$ .


Deine erforderliche Partialbruchzerlegung muss demnach lauten:

[mm] $\bruch{1}{x^2*\left(x^2+9\right)} [/mm] \ = \ [mm] \bruch{A}{x}+\bruch{B}{x^2}+\bruch{C*x+D}{x^2+9}$ [/mm]


Gruß vom
Roadrunner


Bezug
                
Bezug
Partialbruchzerlegng: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:58 Mi 11.01.2006
Autor: elko

Irgendwie versthe ich die ganze Partialbruch zerlegung nicht sobald es mit einer doppelten oder dreifachen nullstelle anfängt!

Die Partialbruchzerlegung mit einfachen Nullstellen verstehe ich weil da kann ich die Nullstellen ja auf die Koeffitienten verteilen!

z.B

x1=3       x2=4       x3=-5

[mm] \bruch{A}{x-3} [/mm] +  [mm] \bruch{B}{x-4} +\bruch{C}{x+5} [/mm]

Aber ist verstehe nicht warum bei der doppelten Nullstele

[mm] \bruch{Cx+D}{x^2+9} [/mm] diese Cx+D Koeffitienten gebildet werden meussen?

Ist das nen Gesetz oder kann mann das irgendwie erklären?


Bezug
                        
Bezug
Partialbruchzerlegng: Koeffizientenvergleich
Status: (Frage) beantwortet Status 
Datum: 15:53 Mi 11.01.2006
Autor: elko

Ich glaube da muss mann wohl einen Koeffitienten vergleich machen?

Die aufgestellete Gleichung lautet:

[mm] Ax(x^2+9)+B(x^2+9)+x^3(C)+x^2(D)=1 [/mm]

[mm] Ax^3+9Ax+Bx^2+9B+Cx^3+Dx^2=1 [/mm]

[mm] (A+C)*x^3+(B+D)*x^2+9Ax+9B=1 [/mm]

Kann jemand damit die Gleichungen für den Koeffitienten Vergleich aufstellen?

Ich verstehe den Koeffitientenvergleich einfahc nicht!!

Daniel



Bezug
                                
Bezug
Partialbruchzerlegng: Antwort
Status: (Antwort) fertig Status 
Datum: 16:12 Mi 11.01.2006
Autor: Zwerglein

Hi, Daniel,

denke mal, dass Dein Ansatz stimmt!

> Ich glaube da muss mann wohl einen Koeffizientenvergleich
> machen?
>  
> Die aufgestellte Gleichung lautet:
>  
> [mm]Ax(x^2+9)+B(x^2+9)+x^3(C)+x^2(D)=1[/mm]
>  
> [mm]Ax^3+9Ax+Bx^2+9B+Cx^3+Dx^2=1[/mm]
>  
> [mm](A+C)*x^3+(B+D)*x^2+9Ax+9B=1[/mm]
>  
> Kann jemand damit die Gleichungen für den Koeffizientenvergleich aufstellen?

"Koeffizienten" sind die Konstanten vor den Potenzen von x und die Konstante ohne x.

Bei [mm] x^{3} [/mm] steht links: A+C; rechts gibt's kein [mm] x^{3}; [/mm] daher: Konstante 0.
(I) A+C = 0
Analog für [mm] x^{2}: [/mm]
(II) B+D = 0
Dann für x:
(III) 9A = 0
Und schließlich die Konstante ohne x (Achtung: Da steht rechts die 1!)
(IV) 9B = 1
So! Nun kannst Du A, B, C und D ausrechnen!

Zur Kontrolle: Dein Endergebnis lautet:

f(x) = [mm] \bruch{1}{9x^{2}} [/mm] -  [mm] \bruch{1}{9(x^{2}+9)} [/mm]

mfG!
Zwerglein

Bezug
                        
Bezug
Partialbruchzerlegng: Antwort
Status: (Antwort) fertig Status 
Datum: 16:23 Mi 11.01.2006
Autor: Zwerglein

Hi, Daniel,

> Irgendwie versthe ich die ganze Partialbruchzerlegung
> nicht sobald es mit einer doppelten oder dreifachen
> nullstelle anfängt!
>  
> Die Partialbruchzerlegung mit einfachen Nullstellen
> verstehe ich weil da kann ich die Nullstellen ja auf die
> Koeffitienten verteilen!
>  
> z.B
>  
> x1=3       x2=4       x3=-5
>  
> [mm]\bruch{A}{x-3}[/mm] +  [mm]\bruch{B}{x-4} +\bruch{C}{x+5}[/mm]
>  
> Aber ist verstehe nicht warum bei der doppelten Nullstele
>
> [mm]\bruch{Cx+D}{x^2+9}[/mm] diese Cx+D Koeffizienten gebildet
> werden müssen?
>  
> Ist das nen Gesetz oder kann mann das irgendwie erklären?
>  

Bei einer Partialbruchzerlegung müssen "echte" Brüche herauskommen, d.h. der Zählergrad ist auf jeden Fall KLEINER als der Nennergrad.
Wenn Du nun z.B. einen nicht zerlegbaren quadratischen Term (bei Die: [mm] x^{2}+9) [/mm] im Nenner hast, kann der Zähler nur linear sein, z.B. ax+b.

Bei einem Term mit doppelter Nullstelle (bei Dir: [mm] x^{2}) [/mm] wäre dieser Ansatz auch möglich, ist aber für die weitere Rechnung (es soll ja anschließend integriert werden!) schlecht brauchbar.
Daher macht man in diesem Fall zwei Brüche draus.
Statt [mm] \bruch{ax+b}{x^{2}} [/mm]
schreibt man also lieber:
[mm] \bruch{a}{x}+\bruch{b}{x^{2}} [/mm]
(Ach ja: Und bei einer dreifachen Nullstelle macht man 3 Brüche, bei einer vierfachen 4, usw.)

mfG!
Zwerglein

Bezug
                                
Bezug
Partialbruchzerlegng: Fälligkeit verlängern?
Status: (Frage) beantwortet Status 
Datum: 11:46 Do 12.01.2006
Autor: elko

Kann mann sich die Fragen und antworten eigendlich speichern?

Da ich mir die Antworten gerne noch heute abend durchlesen möchte!!

Sonst verfällt der threat ja!



Bezug
                                        
Bezug
Partialbruchzerlegng: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:49 Do 12.01.2006
Autor: Stefan

Hallo!

Nein, der Thread löst sich auch nach Ende der Fälligkeit nicht in seine Bestandteile auf, sondern ist nach wie vor lesbar, auch in zehn Jahren noch, falls es den Matheraum dann noch gibt. :-)

Liebe Grüße
Stefan

Bezug
        
Bezug
Partialbruchzerlegng: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:50 Do 12.01.2006
Autor: Stefan

Hallo!

Die Frage ist bereits beantwortet und wurde irrtümlich zurückversetzt.

Liebe Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de