www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Partielle Ableitung
Partielle Ableitung < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partielle Ableitung: Fehlerrechnung
Status: (Frage) beantwortet Status 
Datum: 11:03 Di 04.07.2017
Autor: fse

Ich habe ein System dessen größe sich folgendermaßen berechnet
[mm] E=\bruch{x*y^2}{z} [/mm]

den fehler meines wertes E kann ich ja mit Hilfe der partiellen Ableitung berechnen
[mm] \Delta E=|\bruch{y^2}{z}|*\Delta [/mm] x + [mm] |\bruch{2xy}{z}|*\Delta [/mm] y [mm] +=|\bruch{-xy}{z^2}|*\Delta [/mm] z

Darf ich die Formel auch anwenden wenn meine Werte x,y,z aufgrund des Systems nur negative Toleranzen haben können
z.B:

[mm] x=9_{-0.60}^{+0} [/mm]  wäre hier dann mein [mm] \Delta [/mm] x trotzedem 0,6 ?

[mm] y=4_{-0.103}^{+0} [/mm] wäre hier dann mein [mm] \Delta [/mm] x trotzedem 0,103 ?


[mm] z=2_{-0.45}^{+0} [/mm] wäre hier dann mein [mm] \Delta [/mm] x trotzedem 0,45 ?

und wie wäre es wenn ich Toleranzen hab mit z.B.  [mm] _{-0.60}^{+0.3} [/mm]
wie wäre hier mein [mm] \Delta [/mm] x?

Viele Grüße
fse

        
Bezug
Partielle Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:29 Di 04.07.2017
Autor: Al-Chwarizmi


> Ich habe ein System dessen größe sich folgendermaßen
> berechnet
>  [mm]E=\bruch{x*y^2}{z}[/mm]
>  
> den fehler meines wertes E kann ich ja mit Hilfe der
> partiellen Ableitung berechnen
>  [mm]\Delta E=|\bruch{y^2}{z}|*\Delta x\, +\,|\bruch{2xy}{z}|*\Delta[/mm] y [mm]+=|\bruch{-xy}{z^2}|*\Delta[/mm] z      [haee]

(1.)  da scheint beim dritten Teilterm etwas nicht zu stimmen
(2.)  Auch die  [mm] \Delta [/mm] x , [mm] \Delta [/mm] y , [mm] \Delta [/mm] z  sollten zwischen Betragsstrichen stehen.
(3.)  Natürlich hat man am Ende eine Ungleichung:   [mm] $|\Delta E|\, \le\, |\bruch{y^2}{z}|*|\Delta [/mm] x| +\ .....$  
  

> Darf ich die Formel auch anwenden wenn meine Werte x,y,z
> aufgrund des Systems nur negative Toleranzen haben können
>  z.B:
>  
> [mm]x=9_{-0.60}^{+0}[/mm]  wäre hier dann mein [mm]\Delta[/mm] x trotzedem
> 0,6 ?
>
> [mm]y=4_{-0.103}^{+0}[/mm] wäre hier dann mein [mm]\Delta[/mm] x trotzedem
> 0,103 ?
>
>
> [mm]z=2_{-0.45}^{+0}[/mm] wäre hier dann mein [mm]\Delta[/mm] x trotzedem
> 0,45 ?
>  
> und wie wäre es wenn ich Toleranzen hab mit z.B.  
> [mm]_{-0.60}^{+0.3}[/mm]
>  wie wäre hier mein [mm]\Delta[/mm] x?

Für derartige Fälle mit konkreten Minimal- und Maximalwerten kann
man doch einfach alle (höchstens 8) möglichen Grenzfälle auch ohne Differential-
Rechnung bestimmen und sich dann (mittels zusätzlicher Stetigkeits-
überlegungen) klar machen, in welchem Intervall die Funktionswerte
schließlich liegen müssen.  

LG  ,    Al-Chwarizmi

Bezug
                
Bezug
Partielle Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:49 Di 18.07.2017
Autor: fse

Es muss natürlich wie folgt heißen:
[mm] \Delta E=|\bruch{y^2}{z}|\cdot{}\Delta x\, +\,|\bruch{2xy}{z}|\cdot{}\Delta [/mm] y [mm] +|\bruch{-xy^2}{z^2}|\cdot{}\Delta [/mm] z

Wenn ich die Werte direkt in die Formel  [mm] E=\bruch{x\cdot{}y^2}{z} [/mm] einsetze mache ich meines Wissens nach einen kleinen Fehler! ?
´
Wenn ich es aber genau berechnen will und unterschiedliche Positive und Negative Abweichungen hab (z.B.:
[mm] x=9_{-0.60}^{+0.20} [/mm]

[mm] y=7_{-0.90}^{+0.4} [/mm]

[mm] z=4_{-0.80}^{+0.01}) [/mm]

kann ich dann nicht einfach den Maximalen Fehler mit [mm] \Delta E=|\bruch{y^2}{z}|\cdot{}\Delta x\, +\,|\bruch{2xy}{z}|\cdot{}\Delta [/mm] y [mm] +|\bruch{-xy^2}{z^2}|\cdot{}\Delta [/mm] z  für die Positiven werte berechnen (in dem ich als [mm] \Delta [/mm] x  , [mm] \Delta [/mm] y   , [mm] \Delta [/mm] z  nur die positiven Werte nehme) und zusätzlich den Betrag des Maximalen Fehlers mit [mm] \Delta E=|\bruch{y^2}{z}|\cdot{}\Delta x\, +\,|\bruch{2xy}{z}|\cdot{}\Delta [/mm] y [mm] +|\bruch{-xy^2}{z^2}|\cdot{}\Delta [/mm] z für die Negativen Werte berechne in dem ich nur die Beträge der Negativen Werte in [mm] \Delta [/mm] x  , [mm] \Delta [/mm] y   , [mm] \Delta [/mm] z  einsetze?

Grüße fse

Bezug
                        
Bezug
Partielle Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:51 Di 18.07.2017
Autor: HJKweseleit

Lass mal die Beträge ganz weg:

[mm] \Delta E=\bruch{y^2}{z}\cdot{}\Delta x\, +\,\bruch{2xy}{z}\cdot{}\Delta y\, -\bruch{xy^2}{z^2}\cdot{}\Delta z\ [/mm]

Du erhältst den größten (positiven) Wert für maximale Fehler [mm] \Delta x\,=0,20, \Delta y\,=0,4 [/mm] und minimalen Fehler [mm] \Delta z\,=-0,80, [/mm] denn dann werden alle Summanden positiv und die Summe dabei so groß wie möglich.

Du erhältst den kleinsten (negativen) Wert für minimale Fehler [mm] \Delta x\,=-0,60, \Delta y\,=-0,90 [/mm] und maximalen Fehler [mm] \Delta z\,=0,01, [/mm] denn dann werden alle Summanden negativ und die Summe dabei so klein wie möglich.

Der tatsächliche Fehler liegt dazwischen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de