www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Partielle Ableitungen
Partielle Ableitungen < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partielle Ableitungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:56 Sa 19.10.2013
Autor: xxgenisxx

Aufgabe
Berechnen sie alle partiellen Ableitungen der Funktion [mm] r(x1,x2,x3)=$\wurzel{x_1^2+x_2^2+x_3^2}$ [/mm] Zeigen sie dass der Satz von Schwarz gilt.

Ok, mir geht es um den ersten Teil. Kann ich hier wie in der Schule einfach den Wurzelterm als in klammern noch 1/2 schreiben und dann die Kettenregel anwenden und dabei [mm] x_2 [/mm] und [mm] x_3 [/mm] wie konstanten behandeln? Wenn nicht muss ich es über den Differenzialquotienten machen?

        
Bezug
Partielle Ableitungen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:04 Sa 19.10.2013
Autor: fred97


> Berechnen sie alle partiellen Ableitungen der Funktion
> r(x1,x2,x3)=[mm]\wurzel{x_1^2+x_2^2+x_3^2}[/mm] Zeigen sie dass der
> Satz von Schwarz gilt.
>  Ok, mir geht es um den ersten Teil. Kann ich hier wie in
> der Schule einfach den Wurzelterm als in klammern noch 1/2
> schreiben und dann die Kettenregel anwenden und dabei [mm]x_2[/mm]
> und [mm]x_3[/mm] wie konstanten behandeln?


Ja, das kannst Du machen, wenn Du die Ableitung nach [mm] x_1 [/mm] berechnest.

FRED


> Wenn nicht muss ich es
> über den Differenzialquotienten machen?


Bezug
                
Bezug
Partielle Ableitungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:18 Sa 19.10.2013
Autor: xxgenisxx

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Danke schonmal! dh für die erst ableitung nach x1 würde gelten:

$\bruch{2x_1}{2\wurzel{x_1^2+x_2^2+x_3^2}$

Bezug
                        
Bezug
Partielle Ableitungen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:25 Sa 19.10.2013
Autor: Diophant

Hallo,

> Danke schonmal! dh für die erst ableitung nach x1 würde
> gelten:

ja: aber das kann man noch kürzen. :-)

Gruß, Diophant

Bezug
                                
Bezug
Partielle Ableitungen: dAnke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:49 Sa 19.10.2013
Autor: xxgenisxx

Ok vielne Dank euch ;D

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de