www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Partielle Diffbarkeit zeigen
Partielle Diffbarkeit zeigen < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partielle Diffbarkeit zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:24 Mi 30.07.2014
Autor: rollroll

Aufgabe
Sei f: [mm] IR^n-->IR [/mm] in 0 partiell diffbar mit f(0)=0. Zeige, dass [mm] g:IR^n-->IR, [/mm] g(x)=f(x)|1+f(x)| in partiell diffbar ist mit grad g(0)= grad f(0).

Hallo,

Ich würde ganz spontan mal mit der Definition beginnen:
Also ich muss ja zeigen, dass der Grenzwert
[mm] \limes_{h\rightarrow0} \bruch{g(x+he_i)-g(x)}{h} [/mm] für x=0 existiert

D.h. [mm] \limes_{h\rightarrow0} \bruch{f(x+he_i)|1+f(x+he_i)|-f(x)|1+f(x))}{h} [/mm]

=  [mm] \limes_{h\rightarrow0} \bruch{f(he_i)|1+f(he_i)|}{h} [/mm]

wobei hier die 0 eingesetzt wurde und f(0)=0 ausgenutzt wurde.

Jetzt weiß ich ja dass [mm] \limes_{h\rightarrow0} \bruch{f(he_i)}{h} [/mm] existiert. Aber jetzt komme ich irgendwie nicht weiter. Muss ich was abschätzen?

        
Bezug
Partielle Diffbarkeit zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:47 Mi 30.07.2014
Autor: Marcel

Hallo,

> Sei f: [mm]IR^n-->IR[/mm] in 0 partiell diffbar mit f(0)=0. Zeige,
> dass [mm]g:IR^n-->IR,[/mm] g(x)=f(x)|1+f(x)| in partiell diffbar ist
> mit grad g(0)= grad f(0).
>  Hallo,
>  
> Ich würde ganz spontan mal mit der Definition beginnen:
>  Also ich muss ja zeigen, dass der Grenzwert
> [mm]\limes_{h\rightarrow0} \bruch{g(x+he_i)-g(x)}{h}[/mm] für x=0
> existiert
>  
> D.h. [mm]\limes_{h\rightarrow0} \bruch{f(x+he_i)|1+f(x+he_i)|-f(x)|1+f(x))}{h}[/mm]
>  
> =  [mm]\limes_{h\rightarrow0} \bruch{f(he_i)|1+f(he_i)|}{h}[/mm]
>  
> wobei hier die 0 eingesetzt wurde und f(0)=0 ausgenutzt
> wurde.
>  
> Jetzt weiß ich ja dass [mm]\limes_{h\rightarrow0} \bruch{f(he_i)}{h}[/mm]Eingabefehler: "\left" und "\right" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)


> existiert.

Du weißt doch, dass das $=\frac{\partial f(0)}{\partial x_i}$ ist. Was passiert nun noch mit $|1+f(he_i)|$
bei $h \to 0$ (mit Begründung)  und was folgt dann? Du hast bis jetzt
gerechnet (mit $x=0 \in \IR^n$)

    $\frac{\partial g(0)}{\partial x_i}=\limes_{h\rightarrow0} \bruch{g(x+he_i)-g(x)}{h}=...=\limes_{h\rightarrow0} \bruch{f(he_i)}{h}*\lim_{h \to 0}|1+f(he_i)|=\frac{\partial f(0)}{\partial x_i}*\lim_{h \to 0}|1+f(he_i)|$

Hinweis: Beachte, dass $x \mapsto |x|$ (als Funktion $\IR \to \IR$) stetig in der
reellen 0 ist, und dass aus der Existenz von

    $\lim_{h \to 0} \frac{f(0+he_i)-f(0)}{h}$

notwendig

    $\lim_{h \to 0} f(he_i)=...?$ (was gehört da hin)

folgt. Natürlich ist hier $f\,$ nicht notwendig differenzierbar in $0 \in \IR^n\,.$ Aber die
Funktion $u_i \colon \IR \ni x \mapsto f(0+x*e_i)$ (wobei $0 \in \IR^n$ gemeint ist)
ist eine reellwertige Funktion einer reellen Variablen. Die Existenz von $\partial f(0)/\partial x_i$
bedeutet nichts anderes als die Existenz von $\left.u_i'(x)\right|_{x=0}\,.$
Und dafür muss die Funktion $u_i(x)$ insbesondere  stetig in der (reellen)
Stelle $x=0\,$ sein - zudem ist hier $u_i(0)=f(\textbf{0}+0*e_i)=f(\textbf{0})=0$ (ich habe hier, der Deutlichkeit
wegen, mal $\textbf{0}$ für die $\IR^n$-Null geschrieben).

Dein Fazit sollte übrigens sein: Alle partiellen Ableitungen von $g\,$ an der Stelle
$\textbf{0}$ existieren und stimmen dort mit den entsprechenden partiellen
Ableitungen von $f\,$ an der Stelle $\textbf{0}$ überein. Wie machst Du nun
weiter? (Ist ja nicht mehr viel zu tun...)

Gruß,
  Marcel

Bezug
                
Bezug
Partielle Diffbarkeit zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:05 Mi 30.07.2014
Autor: rollroll

Also habe ich ja

...= [mm] \limes_{h\rightarrow0} \bruch{f(he_i)}{h}\cdot{}\lim_{h \to 0}|1+f(he_i)|=\frac{\partial f(0)}{\partial x_i}\cdot{}\lim_{h \to 0}|1+f(he_i)| [/mm] = [mm] \frac{\partial f(0)}{\partial x_i}, [/mm] da  [mm] \lim_{h \to 0} f(he_i)= [/mm] 0 ist. Also ist g in 0 partiell diffbar mit grad g(0)= grad f(0)

Bezug
                        
Bezug
Partielle Diffbarkeit zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 01:09 Do 31.07.2014
Autor: Marcel

Hallo,

> Also habe ich ja
>
> ...= [mm]\limes_{h\rightarrow0} \bruch{f(he_i)}{h}\cdot{}\lim_{h \to 0}|1+f(he_i)|=\frac{\partial f(0)}{\partial x_i}\cdot{}\lim_{h \to 0}|1+f(he_i)|[/mm]
> = [mm]\frac{\partial f(0)}{\partial x_i},[/mm] da  [mm]\lim_{h \to 0} f(he_i)=[/mm]  0 ist.

[ok]

> Also ist g in 0 partiell diffbar mit grad g(0)= grad f(0)

Genau - denn letzteres folgt, weil an der Stelle 0 alle partiellen
Ableitungen in von f und g übereinstimmen (siehe obige Rechnung).

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de