www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Partielle Differentialgleichungen" - Partielle Differentialgleichun
Partielle Differentialgleichun < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partielle Differentialgleichun: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:32 Fr 31.08.2007
Autor: clover84

Aufgabe
Man zeige, dass die Funktion [mm] f(x,y)=xe^{-y/x} [/mm] der partiellen Differentialgleichung

[mm] x*\bruch{\partial^{2}f}{\partial x \partial y}+2(\bruch{\partial f}{\partial x}+\bruch{\partial f}{\partial y})=y*\bruch{\partial^{2}f}{\partial y^{2}} [/mm] genügt

Hallo,

leider weiß ich nicht, wie ich die Aufgabe zu lösen habe. Könnte mir da bitte jemand weiter helfen??


Danke im voraus.

clover

        
Bezug
Partielle Differentialgleichun: Antwort
Status: (Antwort) fertig Status 
Datum: 18:53 Fr 31.08.2007
Autor: leduart

Hallo
einfach alle Ableitungen bilden, einsetzen, nachsehen ob die Gleichung dann stimmt.
Gruss leduart

Bezug
                
Bezug
Partielle Differentialgleichun: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:03 Fr 31.08.2007
Autor: clover84

Was bedeuten die Potenzen bei [mm] \partial^{2} [/mm] und bei [mm] y^{2}?? [/mm]

Danke im voraus

Bezug
                        
Bezug
Partielle Differentialgleichun: wie oft abgeleitet
Status: (Antwort) fertig Status 
Datum: 19:23 Fr 31.08.2007
Autor: Loddar

Hallo clover!


> Was bedeuten die Potenzen bei [mm]\partial^{2}[/mm] und bei [mm]y^{2}[/mm] ??

Dass es sich hierbei um die 2. Ableitung (wegen [mm] $\partial^2$ [/mm] ) handelt, und zwar wurde hier zwei-mal nach $y_$ partial abgeleitet (wegen [mm] $y^2$ [/mm] ).


In der Kurzschreibweise kann man Deine DGL auch wie folgt darstellen:

$$ [mm] x*f_{xy}+2*(f_x+f_y) [/mm] \ = \ [mm] y*f_{yy}$$ [/mm]


Gruß
Loddar


Bezug
                                
Bezug
Partielle Differentialgleichun: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:59 Fr 31.08.2007
Autor: Steffy

Hallo Ihr,

welche Regel wird denn bei einer solchen Funktion angewandt??

Produkt- oder Kettenregel??

Würd auch gern versuchen die Aufgabe zu lösen.


Steffy

Bezug
                                        
Bezug
Partielle Differentialgleichun: Antwort
Status: (Antwort) fertig Status 
Datum: 20:35 Fr 31.08.2007
Autor: leduart

Hallo steffy
Die partiellen Ableitungen werden so behandelt, als ob die andere Variable eine Konstante wäre.
Dann genau nach den Regeln die für gewöhnliche Funktionen gelten, also kommen Produkt und Kettenregel vor.
[mm] f(x,y)=x^2*y f_x=2x*y f_y=x^2 [/mm] zum Bsp.
f(x,y)=sin(x*y) [mm] f_x=cos(xy)*y [/mm] usw.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de