www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Partielle Integration+ Subst.
Partielle Integration+ Subst. < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partielle Integration+ Subst.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:11 Mo 18.04.2005
Autor: Jennifer

Gitb es eigentlich eine kleine Faustregel mit deren Hilfe man feststellen kann, ob man bei der vorliegenden Funktion zur Bildung der Stammfunktion die partielle Integration oder die Substitution anwenden muss?

Wäre schön, wenn mir jemand weiterhelfen könnte.

LG

Jennifer

        
Bezug
Partielle Integration+ Subst.: Welche Funktion denn? *such*
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Mo 18.04.2005
Autor: Loddar

Hallo Jennifer!


Es wäre schön, wenn Du uns Deine Funktion auch noch verraten würdest.

So pauschal ist ein Lösungsansatz nicht ganz möglich ;-) ...


Gruß
Loddar


Bezug
                
Bezug
Partielle Integration+ Subst.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:31 Mo 18.04.2005
Autor: Jennifer

Ähm, ich habe mich wirklich sehr verworren ausgedrückt...zuviel mathe gelernt ;) Also, es geht um keine konkrete Funktion sondern einfach um die Frage, wie ich erkenne, ob die partielle Integration oder die Substitution sinnvoll wäre.

Bezug
                        
Bezug
Partielle Integration+ Subst.: Antwort
Status: (Antwort) fertig Status 
Datum: 18:01 Mo 18.04.2005
Autor: Max

Hallo Jennifer,

Intergieren ist immer schwer ;-)

Aber hier paar Anmerkungen welche Integrationsmethode am erfolgversprechensten aussieht.

Also um mit Substitution integrieren zu können muss man halt eine geeignete Substitution finden, so dass [mm] $\int_a^b f\left(g(x)\right)\cdot [/mm] g'(x) dx = [mm] \int_{g(a)}^{g(b)} [/mm] f(t) dt $ angewendet werden kann. Das ist vor allem Efahrungssache.

Die partielle Integration wird vor allem in zwei Fällen angewendet, (a) zum einen wenn man ein Produkt  von einer Funktion hat, die sich nur unwesentlich verändert (zB [mm] $e^x$, $\sin(x)$, $\cos(x)$) [/mm] und einem Polynom. Dann kann man sehr häufig durch mehrfaches anwenden der partiellen Integration das Polynom so oft ableiten, bis es sich nur noch um eine Konstante handelt. Im anderen Fall (b) hat man zwei Funktionen, deren Ableitung sich nur geringfügig verändert, dann wendet man die partielle Intergration so an, dass auf der rechten Seite wieder das ursprüngliche gesuchte Integral erscheint und löst danach auf.

Beispiele dafür wären

(a) [mm] $\int x^2 e^x [/mm] dx$ und (b) [mm] $\int \sin(x)\cos(x) [/mm] dx$

Gruß Max


Bezug
                                
Bezug
Partielle Integration+ Subst.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:18 Mo 18.04.2005
Autor: Jennifer

ahh danke :)

und bei [mm] f(x)=10x*e^x² [/mm] subsitituiert man wohl deßhalb, weil sich die x² anbieten..mh?

Bezug
                                        
Bezug
Partielle Integration+ Subst.: Richtig erkannt ...
Status: (Antwort) fertig Status 
Datum: 19:03 Mo 18.04.2005
Autor: Loddar

Hallo Jennifer!


> und bei [mm]f(x)=10x*e^{x^2}[/mm] subsitituiert man wohl deshalb, weil
> sich die x² anbieten..mh?

[daumenhoch] Zum einen gehört diese Funktion ja zu der Reihe, die Zwerglein in seiner Antwort genannt hat.


Und: JA, Du hast recht ...

Der Ausdruck [mm] $e^{x^2}$ [/mm] läßt sich nämlich nicht elementar integrieren.

Zudem wird diese Funktion ja nahezu mit der Ableitung des Exponenten multipliziert, so daß hier die Substitution $z \ := \ [mm] x^2$ [/mm] der einzige Lösungsansatz ist.


Nun etwas klarer?

Gruß
Loddar


Bezug
                        
Bezug
Partielle Integration+ Subst.: weitere Antwort
Status: (Antwort) fertig Status 
Datum: 18:11 Mo 18.04.2005
Autor: Zwerglein

Hi, Jennifer,

Mit der Methode der part.Int. können vor allem Funktionen folgenden Typs integriert werden:
[mm] f(x)=x^{n}*ln(x) [/mm]
[mm] f(x)=x^{n}*e^{x} [/mm]
[mm] f(x)=x^{n}*sin(x) [/mm]
[mm] f(x)=x^{n}*cos(x) [/mm]
[mm] f(x)=e^{kx}*sin(x) [/mm]
[mm] f(x)=e^{kx}*cos(x) [/mm]
sowie bei Arcusfunktionen ("Einsertrick"!)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de