www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Partielle Integration
Partielle Integration < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partielle Integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:06 So 18.06.2006
Autor: SirTech

Aufgabe
Bestimmen sie das Integral =  [mm] \integral_{0}^{\pi}{ sin(2t)*cos(t) dx}. [/mm]

Ich habe es mit partieller Integration versucht aber lande in einer Art Schleife. Jetzt gab man mir den Tipp:

"Nach dem 2. Male dürfte das auszurechnene Intergral wieder da stehen und du kannst die beiden Integrale voneinander abziehen."

Das Integral sieht dann bei mir so aus:

[mm] [sin(2t)*sin(t)]+[cos(2t)*cos(t)]-4*\integral_{0}^{\pi}{sin(2t)*cos(t) dt} [/mm]

Die Grenzen sind immer von 0 bis [mm] \pi [/mm] nur weiß ich nicht wie man das bei den "Großen Klammern" schreiben soll.

Weiß einer vielleicht weiter oder kann mir einen Tipp geben ? Danke im Voraus -Patrick

PS: Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Partielle Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 17:31 So 18.06.2006
Autor: Event_Horizon

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

$\integral_{0}^{\pi}{ sin(2t)*cos(t) dt=[sin(2t)*sin(t)]+[cos(2t)*cos(t)]-4*\integral_{0}^{\pi}{sin(2t)*cos(t) dt$

Dann rechne jetzt einfach mal $+4*\integral_{0}^{\pi}{sin(2t)*cos(t) dt$ auf beiden Seiten!

An die eckigen Klamern kommen natürlich noch die Grenzen dran, denn das sind ja Stammfunktionen, und das INtegral berechnet sich ja dann nach F(a)-F(b).

Bezug
        
Bezug
Partielle Integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:47 So 18.06.2006
Autor: SirTech

Zuerst einmal vielen Dank für die schnelle Hilfe!
Jedoch verstehe ich das nicht, denn dann habe ich:

[mm] \integral_{0}^{\pi}{sin(2t)*cos(t) dt}+ 4*\integral_{0}^{\pi}{sin(2t)*cos(t) dt}=[sin(2t)*sin(t)]+[cos(2t)*cos(t)] [/mm]

Das scheint mir nicht richtig zu sein, wenn doch, wie geht es dann bitte weiter?
Wäre für eine nähere Erläuterung sehr dankbar!
Selbstverständlich muss man sich auch hier wieder die Grenzen an die großen Klammern denken, da ich nicht weiß wie man sie schreibt.

So long -SirTech

Bezug
                
Bezug
Partielle Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 01:05 Mo 19.06.2006
Autor: leduart

Hallo Sirtech:
nenn mal dein gesuchtes Integral  X dann steht da links doch jetzt X+4X
na ja und wenn du 5X kennst findest du X sicher selbst.
Jetzt greifst du dir hoffentlich an den Kopf und rufst AUTSCH!
Gruss leduart

Bezug
        
Bezug
Partielle Integration: Grenzen schreiben
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:22 Mo 19.06.2006
Autor: ardik

Hallo,
  

> [mm][sin(2t)*sin(t)]+[cos(2t)*cos(t)]-4*\integral_{0}^{\pi}{sin(2t)*cos(t) dt}[/mm]
>  
> Die Grenzen sind immer von 0 bis [mm]\pi[/mm] nur weiß ich nicht wie
> man das bei den "Großen Klammern" schreiben soll.

Z.B. so:

...]_{0}^{\pi}

also genauso wie beim Integralzeichen.

Das sieht dann so aus: [mm] $...]_0^{\pi}$ [/mm]

Schöne Grüße,
ardik

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de