www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Partielle Integration
Partielle Integration < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partielle Integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:20 Sa 26.01.2008
Autor: codymanix

Aufgabe
Folgendes Integral ist zu lösen:

[mm] \integral_{}^{}{x \wurzel{1+x} dx} [/mm]

Hallo Leute, das sah mir eigentlich so aus als ob man das ganz einfach mit Partieller Integration lösen könnte aber ich komme einfach nicht auf das richtige Ergebnis.

also hab ich erstmal x=u und [mm] \wurzel{1+x}=v' [/mm] gesetzt:

= [mm] x\bruch{2}{3}(1+x)^{3/2} [/mm] - [mm] \integral_{}^{}{\bruch{2}{3}(1+x)^{3/2} dx} [/mm]

= [mm] x\bruch{2}{3}(1+x)^{3/2} [/mm] - [mm] \bruch{4}{15}(1+x)^{5/2} [/mm]

In der Lösung dagegen steht aber das [mm] \bruch{2}{5}(1+x)^{5/2} [/mm]  - [mm] \bruch{2}{3}(1+x)^{3/2} [/mm]

Was könnte ich falsch gemacht haben? wo ist in der Lösung das x verschwunden und warum sind die Seiten vertauscht?


        
Bezug
Partielle Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 17:14 Sa 26.01.2008
Autor: Somebody


> Folgendes Integral ist zu lösen:
>  
> [mm]\integral_{}^{}{x \wurzel{1+x} dx}[/mm]
>  
> Hallo Leute, das sah mir eigentlich so aus als ob man das
> ganz einfach mit Partieller Integration lösen könnte aber
> ich komme einfach nicht auf das richtige Ergebnis.
>  
> also hab ich erstmal x=u und [mm]\wurzel{1+x}=v'[/mm] gesetzt:
>  
> = [mm]x\bruch{2}{3}(1+x)^{3/2}[/mm] -
> [mm]\integral_{}^{}{\bruch{2}{3}(1+x)^{3/2} dx}[/mm]
>  
> = [mm]x\bruch{2}{3}(1+x)^{3/2}[/mm] - [mm]\bruch{4}{15}(1+x)^{5/2}[/mm]
>  
> In der Lösung dagegen steht aber das
> [mm]\bruch{2}{5}(1+x)^{5/2}[/mm]  - [mm]\bruch{2}{3}(1+x)^{3/2}[/mm]
>  
> Was könnte ich falsch gemacht haben?

Nichts

> wo ist in der Lösung
> das x verschwunden und warum sind die Seiten vertauscht?

Die Stammfunktion ist nur bis auf eine additive Konstante bestimmt ("Integrationskonstante"): die Differenz zwischen Deiner Ableitung und der Lösung hat Ableitung konstant $0$ (sagt ein CAS) und daher scheinen sich die beiden Lösungen in der Tat nur um eine Konstante zu unterscheiden. Wüsste aber im Augenblick nicht gleich, wie dies rein algebraisch zu zeigen wäre.

Die andere Lösung ist ziemlich sicher mit der Substitution $u := 1+x$ gefunden worden, denn dann ist

[mm]\int x\sqrt{1+x}\; dx=\int (u-1)\sqrt{u}\; du=\int \left(u^{3/2}-u^{1/2}\right)\;du=\frac{2}{5}u^{5/2}-\frac{2}{3}u^{3/2}=\frac{2}{5}(1+x)^{5/2}-\frac{2}{3}(1+x)^{3/2}[/mm]


Bezug
                
Bezug
Partielle Integration: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:27 Sa 26.01.2008
Autor: codymanix

Na das ist ja lustig, Mathe kann ja so komisch sein. Zwei völlig verschiedene Lösungen die dann doch gleich sind, und keiner kann's beweisen :)

Jetzt weiß ich wieso die Profs immer so lange zum Kontrollieren der Arbeiten brauchen, selbst wenn man eine ganz andere Lösung hat als in der Lösung steht kanns dennoch richtig sein..

Vielen Dank jedenfalls erstmal!


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de