www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Partielle Integration
Partielle Integration < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partielle Integration: Part. Integration von cos^4
Status: (Frage) beantwortet Status 
Datum: 12:58 Sa 19.02.2005
Autor: lac-operon

Hallo zusammen!

Rechne gerade eine alte Klausur durch, weil ich in ein paar Tagen fällig bin. Eigentlich ganz leicht, nur irgendwie stehe ich bei einer Aufgabe auf dem Schlauch:

[mm] \integral_{0}^{\pi/2} {cos^{4}(x) dx} [/mm]

> Partielle Integration ...:

[mm] \integral_{0}^{\pi/2} {cos^{3}(x) + cos(x) dx} [/mm]

ergibt bei mir:

[mm] [cos^{3}(x)*sin(x)] [/mm] "von  [mm] \pi/2 [/mm] über 0" - [mm] \integral_{0}^{\pi/2} {3cos^{2}(x)*(-sin(x))*sin(x) dx} [/mm]

=

[mm] [cos^{3}(x)*sin(x)] [/mm] "von  [mm] \pi/2 [/mm] über 0" + [mm] 3*\integral_{0}^{\pi/2} {cos^{2}(x)*sin^{2}(x) dx} [/mm]

... so. Könntet ihr mir bitte weiterhelfen? Bin zur Zeit nicht ganz auf dem Laufenden.

Meine Idee wäre, im Integral [mm] 3*\integral_{0}^{\pi/2} {cos^{2}(x)*sin(x)^{2} dx} [/mm] ... das [mm] sin^{2} [/mm] als [mm] 1-cos^{2} [/mm] auszudrücken um dann nochmals partiell integrieren zu können.

Um dies zu überprüfen müsste ich allerdings nicht so verwirrt sein wie momentan (Klausuren und Ganztagspraktikum in der nächsten Woche ... puuh!!), das bedeutet: Ich schaffe den geistigen Sprung zur Lösung alleine nicht und bin auf andere angewiesen.

Vielen, vielen Dank, an diejenigen, die sich die Mühe machen. Wenn ich wieder einigermaßen klar im Kopf bin und etwas mehr Zeit habe, dann werde ich mich selbstverständlich auch um die Fragen anderer kümmern!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Partielle Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 13:26 Sa 19.02.2005
Autor: nitro1185

Hallo!!!

Ahhh wenn du die Partielle Integration anwendest würde ich folgendes machen!!!


[mm] \integral_{0}^{pi/2} {cos(x)^{4} dx}= [/mm]

[mm] \integral_{0}^{pi/2} [/mm] {cos(x)³*cos(x) dx}  und nicht cos(x)³+cos(x)


mfg daniel

Bezug
        
Bezug
Partielle Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 13:53 Sa 19.02.2005
Autor: Fabian

Hallo lac-operon

Es gibt auch noch eine andere Möglichkeit.

Mit Hilfe der Trigonometrischen Beziehung


[mm] cos^{4}x=\bruch{1}{8}[cos(4x)+4*cos(2x)+3] [/mm]

läßt sich das Integral in drei einfachere Teilintegrale aufspalten!

Also:


[mm] \integral{cos^{4}x*dx}= \bruch{1}{8}\integral{cos(4x)*dx}+\bruch{1}{2}\integral{cos(2x)*dx}+\bruch{3}{8}\integral{1*dx} [/mm]

Gruß Fabian

Bezug
        
Bezug
Partielle Integration: Stimmt! Ein Fehler!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:59 Sa 19.02.2005
Autor: lac-operon

[mm] \integral_{0}^{ \pi/2} [/mm] {cos(x)³*cos(x)dx}

So muss es sein!

Danke Daniel!! (Das spiegelt meinen geistigen Zustand wieder!)

Und natürlich vielen vielen Dank an Fabian! Das hilft mir wirklich weiter!

Mfg an alle Lac-Operon

> natürlich bin ich noch für alle weiteren Tipps offen!



Bezug
        
Bezug
Partielle Integration: Dein Weg geht auch!
Status: (Antwort) fertig Status 
Datum: 15:13 Sa 19.02.2005
Autor: Loddar

Hallo lac-operon!

Zunächst einmal ein [willkommenmr] !!!

Und dann mal ein Riesenkompliment - als "Neueinsteiger" hier alles richtig gemacht (Begrüßung, Lösungsansätze und den Formeleditor benutzt) [applaus] !!


> [mm]\integral_{0}^{\pi/2} {\cos^{4}(x) dx}[/mm]   [mm]= \ \integral_{0}^{\pi/2} {\cos^{3}(x) \red{ \ * \ } \cos(x) dx}[/mm]

(War bestimmt nur ein Tippfehler.)

> [mm]= \ \left[\cos^{3}(x)*\sin(x)\right]_{0}^{\pi/2} - \integral_{0}^{\pi/2} {3*\cos^{2}(x)*(-\sin(x))*\sin(x) dx}[/mm]
> [mm]= \ \left[\cos^{3}(x)*\sin(x)\right]_{0}^{\pi/2} + 3*\integral_{0}^{\pi/2} {\cos^{2}(x)*\sin^{2}(x) dx}[/mm]

[daumenhoch] Bis hierher alles richtig. Prima!



> Meine Idee wäre, im Integral [mm]3*\integral_{0}^{\pi/2} {\cos^{2}(x)*\sin(x)^{2} dx}[/mm]
> ... das [mm]\sin^{2}[/mm] als [mm]1-\cos^{2}[/mm] auszudrücken um dann nochmals
> partiell integrieren zu können.

[daumenhoch] Auch diese Idee ist sehr gut.


Damit erhältst Du doch:

[mm]= \ \left[\cos^{3}(x)*\sin(x)\right]_{0}^{\pi/2} + 3*\integral_{0}^{\pi/2} {\cos^{2}(x)*[1 - \cos^{2}(x)] dx}[/mm]

[mm]= \ \left[\cos^{3}(x)*\sin(x)\right]_{0}^{\pi/2} + 3*\integral_{0}^{\pi/2} {\cos^{2}(x) - \cos^{4}(x) dx}[/mm]

[mm]= \ \left[\cos^{3}(x)*\sin(x)\right]_{0}^{\pi/2} + 3*\integral_{0}^{\pi/2} {\cos^{2}(x) dx} - 3*\integral_{0}^{\pi/2} {\cos^{4}(x) dx}[/mm]


Den Ausdruck [mm]- 3*\integral_{0}^{\pi/2} {\cos^{4}(x) dx}[/mm] kannst du nun auf die linke Seite der Gleichung bringen.


Für den Ausdruck [mm] $\integral_{0}^{\pi/2} {\cos^{2}(x) dx}$ [/mm] mußt Du halt nochmals partielle Integration anwenden.


Kommst Du nun etwas weiter?

Teile uns doch mal Dein Ergebnis mit zur Kontrolle, wenn Du möchtest ...


> Wenn ich wieder einigermaßen klar im Kopf bin und
> etwas mehr Zeit habe, dann werde ich mich
> selbstverständlich auch um die Fragen anderer kümmern!

Prima - das freut uns ...


Grüße
Loddar


Bezug
        
Bezug
Partielle Integration: Ergebniskontrolle :-)
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:39 Sa 19.02.2005
Autor: lac-operon

Vielen, vielen Dank: 1. Für die hervorragende Hilfestellung (an alle) und 2. Für die Blumen!!!

Mein Ergebnis wäre: [mm] \integral_{0}^{\pi/2} {cos^4(x) dx} [/mm] = [mm] \bruch{3}{16} \pi [/mm]

Es ist es super, dass es Menschen wie euch gibt! Ich werde euch auf jeden Fall weiterempfehlen und versuchen dort zu helfen, wo ich kann!

Gruß, lac-operon.

Bezug
                
Bezug
Partielle Integration: Stimmt !!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:55 Sa 19.02.2005
Autor: Loddar

.

> Mein Ergebnis wäre: [mm]\integral_{0}^{\pi/2} {cos^4(x) dx}[/mm] = [mm]\bruch{3}{16} \pi[/mm]

     [daumenhoch]



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de