www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Partielle Integration
Partielle Integration < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partielle Integration: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 19:06 Mi 17.02.2010
Autor: bAbUm

Aufgabe
[Dateianhang nicht öffentlich]



so hätte ich das gemacht:

f'(t)=cos(t) ; f(t)= sin(t)
[mm] g(t)=cos^3(t) [/mm] ; g'(t)= [mm] 3*cos^2(t) [/mm]

[mm] [sin(t)*cos^3(t)]^{\pi/2}_0 [/mm]  -  [mm] \integral_{0}^{\pi/2}{sin(t)*3*cos^2(t) dt} [/mm]

Guten Abend.

Ich stehe wie ein Ochs vorm Berg.
Mein Ansatz ist mit dem der Lösung unterschiedlich.
Nun möchte ich wissen was ich falsch gemacht habe, sofern ich das habe, und was man in der lösung gemacht hat?

Bin um jede Hilfe dankbar.

gruß
babum

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Partielle Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 20:06 Mi 17.02.2010
Autor: MathePower

Hallo bAbUm,




> [Dateianhang nicht öffentlich]
>  
>
>
> so hätte ich das gemacht:
>  
> f'(t)=cos(t) ; f(t)= sin(t)
>  [mm]g(t)=cos^3(t)[/mm] ; g'(t)= [mm]3*cos^2(t)[/mm]
>  
> [mm][sin(t)*cos^3(t)]^{\pi/2}_0[/mm]  -  
> [mm]\integral_{0}^{\pi/2}{sin(t)*3*cos^2(t) dt}[/mm]
>  
> Guten Abend.
>  
> Ich stehe wie ein Ochs vorm Berg.
>  Mein Ansatz ist mit dem der Lösung unterschiedlich.
> Nun möchte ich wissen was ich falsch gemacht habe, sofern
> ich das habe, und was man in der lösung gemacht hat?


Die Ableitung von [mm]\cos^{3}\left(t\right)[/mm] is nicht richtig berechnet worden.

Es ist

[mm]\left( \ \cos^{3}\left(t\right) \ \right)'=3*\cos^{2}\left(t\right)*\red{\left( \ -\sin\left(t\right) \ \right)}[/mm]

Dann lautet die partielle Integration

[mm][sin(t)*cos^3(t)]^{\pi/2}_0 - \integral_{0}^{\pi/2}{sin(t)*3*cos^2(t)* \red{\left( \ -\sin\left(t\right) \ \right)} \ dt}[/mm]


>  
> Bin um jede Hilfe dankbar.
>  
> gruß
> babum


Gruss
MathePower

Bezug
                
Bezug
Partielle Integration: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:19 Mi 17.02.2010
Autor: bAbUm

achso.
Kettenregel...

Danke dir

Bezug
                
Bezug
Partielle Integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:36 Mi 17.02.2010
Autor: bAbUm

$ [mm] [\underbrace{sin(t)\cdot{}cos^3(t)}_{0}]^{\pi/2}_0 [/mm] - [mm] \integral_{0}^{\pi/2}{sin(t)\cdot{}3\cdot{}cos^2(t)\cdot{} \red{\left( \ -\sin\left(t\right) \ \right)} \ dt} [/mm] $

ok klar soweit.
nun geht so folgendermaßen in meiner lösung weiter.

= [mm] 3*\integral_{0}^{\pi/2}{cos^2(t) dt} [/mm] - [mm] 3*\integral_{0}^{\pi/2}{cos^4(t) dt} [/mm]
wie kommt man nur darauf?

edit: ok die lösung dafür ist sin²+cos²=1

ah, und warum wird der vordere teil der part. Int. =0 ?? bei mir kommt da 0.027 raus.

Bezug
                        
Bezug
Partielle Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 20:54 Mi 17.02.2010
Autor: fencheltee


> [mm][\underbrace{sin(t)\cdot{}cos^3(t)}_{0}]^{\pi/2}_0 - \integral_{0}^{\pi/2}{sin(t)\cdot{}3\cdot{}cos^2(t)\cdot{} \red{\left( \ -\sin\left(t\right) \ \right)} \ dt}[/mm]
>  
> ok klar soweit.
>  nun geht so folgendermaßen in meiner lösung weiter.
>  
> = [mm]3*\integral_{0}^{\pi/2}{cos^2(t) dt}[/mm] -
> [mm]3*\integral_{0}^{\pi/2}{cos^4(t) dt}[/mm]
>  wie kommt man nur
> darauf?
>  
> edit: ok die lösung dafür ist sin²+cos²=1
>  
> ah, und warum wird der vordere teil der part. Int. =0 ??
> bei mir kommt da 0.027 raus.  

bei der oberen grenze wird der cos null, bei der unteren grenze dann der sinus.
vielleicht ist dein TR auf deg und nicht rad gestellt.. aber normalerweise sollte man sich dann auch "aneignen", wo der sin/cos nullstellen, maxima etc hat

gruß tee

Bezug
                                
Bezug
Partielle Integration: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:59 Mi 17.02.2010
Autor: bAbUm


>  vielleicht ist dein TR auf deg und nicht rad gestellt..
> aber normalerweise sollte man sich dann auch "aneignen", wo
> der sin/cos nullstellen, maxima etc hat

oh je... *im boden versink*
man muss manuell rad eingeben...
naja ich hätte noch eine frage aber die stelle ich morgen.
nach 8 stunden mathe habe ich nun kleine lust mehr.

Danke Euch nocheinmal!



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de