www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Partielle Integration
Partielle Integration < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partielle Integration: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 05:24 So 25.04.2010
Autor: ChopSuey

Aufgabe
Zeigen Sie mit Hilfe partieller Integration, dass

$\ [mm] \integral_{0}^{2\pi}{\sin(nx)\sin(mx) dx} [/mm] = [mm] \begin{cases} \pi, & \mbox{für } n =m \\ 0, & \mbox{für } n \not= m \end{cases} [/mm] $

Hallo,

ich habe Schwierigkeiten damit, die Aufgabe zu lösen.

Sei $\ f(x) = [mm] \sin(nx) [/mm] $ und $\ g'(x) = [mm] \sin(mx) \gdw [/mm] g(x) = [mm] -\frac{1}{m}\cos [/mm] mx $

Dann gilt

$\ [mm] \integral_{0}^{2\pi}{\sin(nx)\sin(mx) dx} [/mm] = [mm] \left[-\frac{1}{m}\sin(nx)\cos(mx) \right] _{0}^{2\pi} [/mm] +  [mm] \frac{n}{m}\integral_{0}^{2\pi}{\cos(mx)\cos(mx) dx} [/mm] $

Das Problem das ich habe, ist, dass $\ [mm] \left[-\frac{1}{m}\sin(nx)\cos(mx) \right] _{0}^{2\pi} [/mm] $ immer zu Null wird und ich dann diese beiden Integrale gegenüber stehen habe.
Doch wie mach ich weiter?
Ist bis dahin überhaupt alles richtig?

Freue mich über Hilfe!

Grüße
ChopSuey


        
Bezug
Partielle Integration: Querverweis
Status: (Antwort) fertig Status 
Datum: 07:31 So 25.04.2010
Autor: Loddar

Hallo ChopSuey!


Siehe mal hier, da wurde dieselbe Aufgabe bereits behandelt?


Gruß
Loddar


Bezug
                
Bezug
Partielle Integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 07:41 So 25.04.2010
Autor: ChopSuey

Morgen Loddar,

danke für deinen Querverweis.

Ich kann den Ansätzen von Igor nur leider nichts entnehmen. Die Rechenwege sind nur bruchstückhaft wiedergegeben und man erkennt auch nicht viel, finde ich.

Du kannst meinen Thread aber natürlich gerne in den von Igor verschieben, wenn du möchtest.

Würde mich dennoch freuen, wenn mir jemand einen Tip geben kann bzw. auf Fehler hinweisen kann, sofern welche vorliegen.

Viele Grüße
ChopSuey

Bezug
                        
Bezug
Partielle Integration: weiter rechnen
Status: (Antwort) fertig Status 
Datum: 08:02 So 25.04.2010
Autor: Loddar

Hallo ChopSuey!


Ich sehe bisher keinen Fehler in Deiner Rechnung. Was sört Dich daran, dass der vordere Term zu Null wird?

Wende auf das rechte Integral wiederum partielle Integration an. Anschließend musst Du noch eine Fallunterscheidung für $n \ = \ m$ bzw. $n \ [mm] \not= [/mm] \ m$ machen.

Oder Du betrachtest den Fall $n \ [mm] \not= [/mm] \ m$ gleich für das Ausgangsintegral.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de