www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrationstheorie" - "Partielle Integration"
"Partielle Integration" < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

"Partielle Integration": Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:22 Mo 08.11.2010
Autor: kuemmelsche


Hallo zusammen,

meine Frage bezieht sich auf die partielle Integration, aber nicht für Riemann-Integrale, sonder Stieltjes-Integrale, egal erstmal ob L-S oder R-S.

Ich meine damit
[mm]\integral_{a}^{b}{f(x) dg(x)} = f(x)g(x) |_a^b - \integral_{a}^{b}{g(x) df(x)}[/mm]

Wie beweist man diese Formel?

Im Riemann-Fall macht man das ja einfach über die Produktregel, aber dieses Konzept haben wir bei L-S oder R-S-Integralen nicht zur Verfügung.

Ich kann mit dieser Formel einigermaßen umgehen, eben mit der ehr unexakten Version mit
[mm]\frac{\mathrm{d} f(x)g(x)}{\mathrm{d} g(x)} = \frac{\mathrm{d} f(x)}{\mathrm{d} g(x)}*g(x) + \frac{\mathrm{d} g(x)}{\mathrm{d} g(x)}*f(x) = \frac{\mathrm{d} f(x)}{\mathrm{d} g(x)}*g(x) + f(x) [/mm]

Kann man diese Gleichung irgendwie formal Beweisen?


Und wenn ich jetzt alles bzgl. g(x) integriere bekommt man ja mit
[mm]\int (\frac{\mathrm{d} f(x)}{\mathrm{d} g(x)}*g(x)) \mathrm{d} g(x) = \int g(x) \mathrm{d} f(x)[/mm]
Eben wieder mehr intuitiv als mathematisch begründet bei mir...

Ich würd mich über eine mathematisch exakte Beweisidee sehr freuen!

Oder ein Link für ein Skript oder so, ich selber hab keins gefunden, und in den mir bekannten Lehrbüchern wie dem Klenke, Loeve und Shiryeav konnte ich leider keine Beweise finden...

Vielen Danke schonmal im Voraus!

lg Kai





        
Bezug
"Partielle Integration": Antwort
Status: (Antwort) fertig Status 
Datum: 06:40 Mo 08.11.2010
Autor: fred97

Schau mal nach in

   H.Heuser, Lehrbuch der Analysis, Teil 1, Satz 90.2

FRED

Bezug
                
Bezug
"Partielle Integration": Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:38 Mo 08.11.2010
Autor: kuemmelsche

Hey cool,

danke, genau sowas hab ich gesucht!

Aber dann hab ich jetzt das nächste Problem.

Ich hab gehofft ich hätte einen Denkfehler, aber wie es scheint nicht. Dann versteh ich ein Beispiel aus "Introduction in Stochastic Integration" von Kuo nicht so recht. Da steht:

[mm]\integral_{0}^{1}{B(t) dt} = B(t)(t-1)|_0^1 - \integral_{0}^{1}{(t-1) dB(t)}[/mm]

Dabei soll B(t) eine Brown'sche Bewegung sein.

Ich hätte anstatt dem (t-1) ein t erwartet.

Ich kann mir das Ergebnis aus dem Buch schön reden, indem ich



[mm]\integral_{0}^{1}{B(t) dt} -0 = \integral_{0}^{1}{B(t) dt} - \integral_{0}^{1}{B(t) d1} = \integral_{0}^{1}{B(t) d(t-1)} = B(t)(t-1)|_0^1 - \integral_{0}^{1}{(t-1) dB(t)}[/mm]
rechne, aber das finde ich ein wenig willkürlich... Weil ja für jede Konstante Funktion [mm] \alpha(t)=c [/mm] gelten müsste



[mm]\integral_{0}^{1}{B(t) d\alpha} = \integral_{0}^{1}{B(t) dc} = 0[/mm]
Und nur bei $c=1$ hat man wirklich eine Erleichterung der Gleichung...

Ich wäre über eine Bestätigung oder Korrektur sehr dankbar!

lg Kai



Bezug
                        
Bezug
"Partielle Integration": Antwort
Status: (Antwort) fertig Status 
Datum: 13:18 Mo 08.11.2010
Autor: rainerS

Hallo Kai!

> Aber dann hab ich jetzt das nächste Problem.
>  
> Ich hab gehofft ich hätte einen Denkfehler, aber wie es
> scheint nicht. Dann versteh ich ein Beispiel aus
> "Introduction in Stochastic Integration" von Kuo nicht so
> recht. Da steht:
>  
> [mm]\integral_{0}^{1}{B(t) dt} = B(t)(t-1)|_0^1 - \integral_{0}^{1}{(t-1) dB(t)}[/mm]
>  
> Dabei soll B(t) eine Brown'sche Bewegung sein.
>  
> Ich hätte anstatt dem (t-1) ein t erwartet.

Die Translationsinvarianz des Stieltjes-Integrals bzgl g:

[mm]\integral fdg = \integral f d(g+c) [/mm]

für beliebige Konstanten c folgt unmittelbar aus der Definition. Damit ist

  [mm]\integral_{0}^{1}{B(t) dt} = \integral_{0}^{1}{B(t) d(t-1)} [/mm]

Viele Grüße
   Rainer



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de