www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Partielle Integration
Partielle Integration < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partielle Integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:04 Do 08.12.2011
Autor: Unkreativ

Aufgabe
[mm] \integral_{}^{}{xsin(3x) dx} [/mm]

Hallo,

Brauche ein wenig Hilfe bei dieser Aufgabe. Ich weiß das diese Aufgabe in der Tabelle der Integrale steht, ich will sie als Übung jedoch trotzdem Schritt für Schritt lösen.

Zerlegung:
[mm] \integral_{}^{}{xsin(3x) dx} [/mm] = [mm] sin(3x)\bruch{1}{2}x^2 [/mm] - [mm] \integral_{}^{}{cos(3x)\bruch{1}{2}x^2 dx} [/mm]

also
v'=x , v= [mm] \bruch{1}{2}x^2 [/mm]
u=sin(3x)
u'= cos(3x)

Weiter mit
[mm] \integral_{}^{}{cos(3x)\bruch{1}{2}x^2 dx} [/mm] = [mm] \bruch{1}{2}x^2 \bruch{1}{3}sin(3x) [/mm] - [mm] \bruch{1}{3}\integral_{}^{}{xsin(3x) dx} [/mm]

Und ab da hab ich dann keine Ahnung mehr.

Danke für jede Hilfe schonmal.

Mfg,
Unkreativ

        
Bezug
Partielle Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 19:08 Do 08.12.2011
Autor: Adamantin


> [mm]\integral_{}^{}{xsin(3x) dx}[/mm]
>  Hallo,
>  
> Brauche ein wenig Hilfe bei dieser Aufgabe. Ich weiß das
> diese Aufgabe in der Tabelle der Integrale steht, ich will
> sie als Übung jedoch trotzdem Schritt für Schritt
> lösen.
>  
> Zerlegung:
>  [mm]\integral_{}^{}{xsin(3x) dx}[/mm] = [mm]sin(3x)\bruch{1}{2}x^2[/mm] -
> [mm]\integral_{}^{}{cos(3x)\bruch{1}{2}x^2 dx}[/mm]
>  
> also
>  v'=x , v= [mm]\bruch{1}{2}x^2[/mm]
>  u=sin(3x)
>  u'= cos(3x)
>  
> Weiter mit
> [mm]\integral_{}^{}{cos(3x)\bruch{1}{2}x^2 dx}[/mm] =
> [mm]\bruch{1}{2}x^2 \bruch{1}{3}sin(3x)[/mm] -
> [mm]\bruch{1}{3}\integral_{}^{}{xsin(3x) dx}[/mm]
>
> Und ab da hab ich dann keine Ahnung mehr.
>
> Danke für jede Hilfe schonmal.
>  
> Mfg,
>  Unkreativ


Diese Schritte sind unnötig, weil du es hier mit dem Sonderfall [mm] $xsin(\beta [/mm] x)$ zu tun hast. Wähle also $v'$ nicht als $ x$ sondern als [mm] $sin(\beta [/mm] x)$. Warum? Weil du x doch ganz offensichtlich ableiten und nicht integrieren willst! Der Trick der partiellen Int. besteht doch darin, etwas unliebsames durch Ableiten in etwas Liebsameres zu verwandeln, und [mm] $1\cdot sin(\beta [/mm] x)$ ist doch viel besser als $x [mm] sin(\beta [/mm] x)$, oder? ;) Deine Variante geht natürlich auch, aber nur mit 2 maliger Int.

Generell: Schwierigere trigonometrische Integrale löst man immer mit zweifacher partieller Integration. Schau deine GLeichung mal scharf an! Was steht denn am Ende? Vielleicht das Integral, was du berechnen willst? Ahhh ;) Das ist der TRick. Da trigonometrische Funtkionen durch zweimaliges Ableiten wieder bis auf das Vorzeichen in ihre Ausgangsfunktion übergehen, kannst du dass dabei entstehende Integral (beim zweiten Schritt) auf die linke Seite der Gleichung bringen, du hast dann 2 mal das Ausgangsintegral, also ist das Integral, bzw. dessen Lösung, die rechte Seite, geteilt durch zwei. Falls unklar, nochmal nachfragen! ;)

EDIT: Du hast aber auch so bei deiner Ableitung des sin(3x) im ersten Schritt die innere Ableitung 3 vergessen.

Bezug
                
Bezug
Partielle Integration: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:33 Do 08.12.2011
Autor: Unkreativ

Ja macht Sinn *schäm*

Ok dann also:

$ [mm] \integral_{}^{}{xsin(3x) dx} [/mm] $ = [mm] x(-\bruch{1}{3}cos(3x) [/mm] - [mm] \integral_{}^{}{-\bruch{1}{3}cos(3x) dx} [/mm]

=> [mm] -\bruch{x}{3} [/mm] cos (3x) + [mm] \bruch{1}{3} \integral_{}^{}{cos(3x) dx} [/mm]

=  [mm] -\bruch{x}{3} [/mm] cos (3x) + [mm] \bruch{1}{3}(\bruch{1}{3} [/mm] sin (3x) )

Passt, Dankeschön :)

Die Formeln für Integration sin/cos(ax) standen falsch in meiner Formelsammlung :/



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de