www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Numerik" - Partitialbruchzerlegung
Partitialbruchzerlegung < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partitialbruchzerlegung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 15:24 Di 07.06.2005
Autor: Fruchtsaft

Hallo,

ich habe Probleme bei der Vorgehensweise mit der Partialbruchzerlegung..

Ich habe folgenden Bruch [mm]x^3-3x^2+2x[/mm] gegeben..

Laut meinem Script wende ich nun einmal das Horner-Schema an zur Bestimmung der Nullstellen...
    1 -3   2
-2     2  -2
    1 -1  [0] --> Das habe ich nun raus...

Also ist -2 eine Nullstelle des Nenners, richitg?

Wie gehe ich jetzt weiter vor, um meine A, B ,C mit entsprechendem Nenner zu erhalten?

Danke

Gruss

        
Bezug
Partitialbruchzerlegung: Koeffizientenvergleich
Status: (Antwort) fertig Status 
Datum: 15:41 Di 07.06.2005
Autor: Roadrunner

Hallo Fruchtsaft!


> Ich habe folgenden Bruch [mm]x^3-3x^2+2x[/mm] gegeben..

Du meinst wohl: [mm] $\bruch{1}{x^3-3x^2+2x}$ [/mm]



> Laut meinem Script wende ich nun einmal das Horner-Schema
> an zur Bestimmung der Nullstellen...
>      1 -3   2
>  -2     2  -2
>      1 -1  [0] --> Das habe ich nun raus...

Mußt Du denn mit dem Horner-Schema arbeiten?

Wenn Du zunächst $x$ ausklammerst, erhältst Du eine quadratische Gleichung, die Du z.B. mit der MBp/q-Formel lösen kannst.


> Also ist -2 eine Nullstelle des Nenners, richitg?

[notok] Ich erhalte: [mm] $x_1 [/mm] \ = \ 0$    [mm] $x_2 [/mm] \ = \ +1$    [mm] $x_3 [/mm] \ = \ +2$    


> Wie gehe ich jetzt weiter vor, um meine A, B ,C mit
> entsprechendem Nenner zu erhalten?

[mm] $\bruch{1}{x^3-3x^2+2x} [/mm] \ = \ [mm] \bruch{A}{x} [/mm] + [mm] \bruch{B}{x-1} [/mm] + [mm] \bruch{C}{x-2}$ [/mm]

Fasse diese drei Brüche auf der rechten Seite mal zusammen und führe dann einen Koeffizientenvergleich durch.

Solltest Du noch Fragen haben, so melde Dich doch nochmal mit Deinem (Zwischen-)Ergebnis.


Gruß vom
Roadrunner


Bezug
                
Bezug
Partitialbruchzerlegung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:09 Di 07.06.2005
Autor: Fruchtsaft

Generell ging es mir nur um den Nenner.. Der Bruch heisst [mm]2x^2-4x+18/x^3-3x^2+2x[/mm]

Also ich muss nicht mit dem Horner-Schema arbeiten, aber dennoch würde mich auch interessieren, wie mit diesem die Nullstellen ermittelt werden..!!?? Scheint mir einfacher als z.B. mit der p-q-Formel

Nun gut, die Nullstellen kann ich nach Anwendung der p-q-Formel bestätigen..

[mm]\bruch{1}{x^3-3x^2+2x} \ = \ \bruch{A}{x} + \bruch{B}{x-1} + \bruch{C}{x-2} [/mm]

Wenn ich die zusammenfasse und berechne, kommt bei mir

[mm]\bruch{A-B+C)x + (B)x^2 -2A}{(x-1)(x-2)}[/mm] raus..

Und nun muss ich zu geben, habe ich noch nicht ganz geschnaggelt, wie ich jetzt wieder eine lineare Gleichung erhalte..



Bezug
                        
Bezug
Partitialbruchzerlegung: Korrektur
Status: (Antwort) fertig Status 
Datum: 17:48 Di 07.06.2005
Autor: Roadrunner

Hallo Fruchtsaft!


> Generell ging es mir nur um den Nenner.. Der Bruch heisst
> [mm]2x^2-4x+18/x^3-3x^2+2x[/mm]

Ah ja ...

  

> Wenn ich die zusammenfasse und berechne, kommt bei mir
>  
> [mm]\bruch{A-B+C)x + (B)x^2 -2A}{(x-1)(x-2)}[/mm] raus..

[notok] Ich erhalte hier:

[mm]\bruch{x^2*(A+B+C)+x*(-3A-2B-C)+2A}{\red{x}*(x-1)*(x-2)}[/mm]


Damit wird nun:

[mm]\bruch{\red{(A+B+C)}*x^2+\blue{(-3A-2B-C)}*x+\green{2A}}{x*(x-1)*(x-2)} \ = \ \bruch{\red{2}*x^2+(\blue{-4})*x+\green{18}}{x^3-3x^2+2x}[/mm]


Es ergibt sich also folgendes Gleichungssystem:

[mm]\red{A+B+C} \ = \ \red{2}[/mm]

[mm]\blue{-3A-2B-C} \ = \ \blue{-4}[/mm]

[mm]\green{2A} \ = \ \green{18}[/mm]


Kommst Du nun alleine weiter?


Gruß vom
Roadrunner


Bezug
                                
Bezug
Partitialbruchzerlegung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:11 Di 07.06.2005
Autor: Fruchtsaft

Ok, Danke für die Ausführung..

Also es müsste somit c=9, b=16 und a=9 sein..

Gruss

Bezug
                                        
Bezug
Partitialbruchzerlegung: Fast ...
Status: (Antwort) fertig Status 
Datum: 18:19 Di 07.06.2005
Autor: Roadrunner

Hallo Fruchtsaft!


> Also es müsste somit c=9, b=16 und a=9 sein..

[notok] Ich habe erhalten: $b \ = \ [mm] \red{-}16$ [/mm] !


Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de