Pascalsche Identität < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 17:02 Di 18.03.2008 | Autor: | Pacapear |
Aufgabe | Sei [mm] p\in\IN_0 [/mm] und [mm] n\in\IN. [/mm] Man beweise für [mm] s_{n,p}:=\summe_{k=1}^{n}k^p [/mm] die Pascalsche Identität [mm] \summe_{j=1}^{p+1}\vektor{p+1 \\ j}s_{n,p+1-j}=(n+1)^{p+1}-1.
[/mm]
Man bestimme damit [mm] s_{n,4}. [/mm] |
Hallo zusammen.
Ich habe versucht diese Aufgabe mit vollständiger Induktion nach n zu lösen, komme im Induktionsschritt aber nicht weiter.
(Ist Induktion überhaupt richtig?)
Erstmal aber habe ich die Pascalsche Identität umgeschrieben:
[mm] \summe_{j=1}^{p+1}\vektor{p+1 \\ j}\summe_{k=1}^{n}k^{p+1-j}=(n+1)^{p+1}-1
[/mm]
Induktionsanfang
n=1
[mm] \summe_{j=1}^{p+1}\vektor{p+1 \\ j}\summe_{k=1}^{1}k^{p+1-j}\overset{!}{=}(1+1)^{p+1}-1
[/mm]
[mm] \summe_{j=1}^{p+1}\vektor{p+1 \\ j}\summe_{k=1}^{1}k^{p+1-j} [/mm] ist das gleiche wie [mm] \summe_{j=1}^{p+1}\vektor{p+1 \\ j}.
[/mm]
[mm] (1+1)^{p+1}-1 [/mm] ist, nachdem ich die Binomialentwicklung für [mm] (1+x)^n [/mm] darauf übertragen habe, das gleiche wie [mm] \vektor{p+1 \\ 1}+\vektor{p+1 \\ 2}+...+\vektor{p+1 \\ p}+\vektor{p+1 \\ p+1} [/mm] und das ist das gleiche wie [mm] \summe_{j=1}^{p+1}\vektor{p+1 \\ j}.
[/mm]
Induktionsschritt
Nun muss ja gezeigt werden, dass auch die Formel [mm] \summe_{j=1}^{p+1}\vektor{p+1 \\ j}\summe_{k=1}^{n+1}k^{p+1-j}=(n+2)^{p+1}-1
[/mm]
Ausgehend von der Formel für n habe ich wie folgt umgeformt:
[mm] \summe_{j=1}^{p+1}\vektor{p+1 \\ j}\summe_{k=1}^{n+1}k^{p+1-j}
[/mm]
= [mm] \summe_{j=1}^{p+1}\vektor{p+1 \\ j}\biggl(\summe_{k=1}^{n}k^{p+1-j}+(n+1)^{p+1-j}\biggr)
[/mm]
[mm] =\summe_{j=1}^{p+1}\biggl(\vektor{p+1 \\ j}\Bigl( \summe_{k=1}^{n}k^{p+1-j}\Bigr)+\vektor{p+1 \\ j}(n+1)^{p+1-j}\biggr)
[/mm]
[mm] =\summe_{j=1}^{p+1}\vektor{p+1 \\ j}\Bigl( \summe_{k=1}^{n}k^{p+1-j}\Bigr)+\summe_{j=1}^{p+1}\vektor{p+1 \\ j}(n+1)^{p+1-j}
[/mm]
Jetzt kann ich ja die Induktionsvoraussetzung einsetzen und erhalte
[mm] =(n+1)^{p+1}-1+\summe_{j=1}^{p+1}\vektor{p+1 \\ j}(n+1)^{p+1-j}
[/mm]
Jetzt weiß ich allerdings nicht mehr weiter. Ich habe schon versucht, es wieder über die Binomialentwicklung zu probieren, aber das hilft mir irgendwie nicht.
Ich freu mich über eine Antwort.
Nadine
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:25 Di 18.03.2008 | Autor: | felixf |
Hallo Nadine!
> Sei [mm]p\in\IN_0[/mm] und [mm]n\in\IN.[/mm] Man beweise für
> [mm]s_{n,p}:=\summe_{k=1}^{n}k^p[/mm] die Pascalsche Identität
> [mm]\summe_{j=1}^{p+1}\vektor{p+1 \\ j}s_{n,p+1-j}=(n+1)^{p+1}-1.[/mm]
>
> Man bestimme damit [mm]s_{n,4}.[/mm]
>
> Hallo zusammen.
>
> Ich habe versucht diese Aufgabe mit vollständiger Induktion
> nach n zu lösen, komme im Induktionsschritt aber nicht
> weiter.
> (Ist Induktion überhaupt richtig?)
Ich wuerde es nicht per Induktion machen, sondern durch Umstellen:
> Erstmal aber habe ich die Pascalsche Identität
> umgeschrieben:
>
> [mm]\summe_{j=1}^{p+1}\vektor{p+1 \\ j}\summe_{k=1}^{n}k^{p+1-j}=(n+1)^{p+1}-1[/mm]
Du kannst erstmal die innere Summe nach aussen ziehen und den Faktor [mm] $1^j$ [/mm] ergaenzen. Dann steht auf der linken Seite [mm] $\summe_{k=1}^{n} \summe_{j=1}^{p+1} \binom{p+1}{j} k^{p+1-j} 1^j$.
[/mm]
Nun ist [mm] $\summe_{j=1}^{p+1} \binom{p+1}{j} k^{p+1-j} 1^j [/mm] + [mm] \binom{p+1}{0} k^{p+1} 1^0 [/mm] = (k + [mm] 1)^{p + 1}$, [/mm] womit die linke Seite der Pascalschen Identitaet auf [mm] $\summe_{k=1}^{n} [/mm] [(k + [mm] 1)^{p + 1} [/mm] - [mm] k^{p +1}]$ [/mm] zusammenschrumpft.
Kommst du damit weiter? :)
LG Felix
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:31 Mi 19.03.2008 | Autor: | felixf |
Hallo Nadine!
> > Du kannst erstmal die innere Summe nach aussen ziehen und
> > den Faktor [mm]1^j[/mm] ergaenzen. Dann steht auf der linken Seite
> > [mm]\summe_{k=1}^{n} \summe_{j=1}^{p+1} \binom{p+1}{j} k^{p+1-j} 1^j[/mm].
>
>
> [mm]\summe_{j=1}^{p+1}\vektor{p+1 \\ j}\summe_{k=1}^{n}k^{p+1-j}[/mm]
> = [mm]\summe_{j=1}^{p+1}\summe_{k=1}^{n}\vektor{p+1 \\ j}k^{p+1-j}[/mm]
> = [mm]\summe_{k=1}^{n}\summe_{j=1}^{p+1}\vektor{p+1 \\ j}k^{p+1-j}[/mm]
> = [mm]\summe_{k=1}^{n}\summe_{j=1}^{p+1}\vektor{p+1 \\ j}k^{p+1-j}1^j[/mm]
>
> Soweit kann ich dir folgen
Ok gut :)
> > Nun ist [mm]\summe_{j=1}^{p+1} \binom{p+1}{j} k^{p+1-j} 1^j + \binom{p+1}{0} k^{p+1} 1^0 = (k + 1)^{p + 1}[/mm]
>
> Warum? Wo zauberst du plötzlich den Summanden für [mm]j=0[/mm] her?
> Würde meine Summe bei [mm]j=0[/mm] starten könnte ich das verstehen
> (weil Summanden aus der Summe rausziehen), aber so?
> Kannst du mir diesen Schritt vielleicht erklären?
Also wenn du die Summe von $j = 0$ bis $p + 1$ hast, dann ist das nach dem Binomischen Satz gleich $(k + [mm] 1)^{p+1}$. [/mm] Wenn du jedoch nur die Summe von $j = 1$ bis $p + 1$ hast, dann fehlt der Summand fuer $j = 0$ und du musst ihn dazuaddieren, um wieder auf $(k + [mm] 1)^{p+1}$ [/mm] zu kommen.
Und das sagt gerade die Gleichung [mm]\summe_{j=1}^{p+1} \binom{p+1}{j} k^{p+1-j} 1^j + \binom{p+1}{0} k^{p+1} 1^0 = (k + 1)^{p + 1}[/mm] aus. Die hat erstmal nichts mit den Umforumungen von oben zu tun! Allerdings kannst du diese Gleichung jetzt umformen (indem du den Extra-Summanden auf die rechte Seite bringst) und damit dann die Gleichungskette oben fortsetzen.
Ich hoffe, das war jetzt verstaendlich :)
LG Felix
|
|
|
|