www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - Periode, Zahlen n^n
Periode, Zahlen n^n < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Periode, Zahlen n^n: Tipp
Status: (Frage) beantwortet Status 
Datum: 18:38 Di 12.12.2006
Autor: Mikke

Hallo zusammen!
Hoffe ihr könnt mir hier helfen:

Ich soll zeigen, dass die Folge der Endziffern
der Zahlen [mm] n^{n} [/mm] periodisch ist. Hier muss also [mm] n^{n}\equiva_{n} [/mm] mod 10 mit [mm] 0\lea_{n}\le9, [/mm] jetzt ist irgendwie die Folge [mm] a_{1},a_{2},... [/mm] zu untersuchen.
Aber weiß gar nicht wie, habe keine Ahnung.
Hoffe wer von euch kann mir hier zeigen wie ich die Aufgabe löse.
Danke schon mal
LG Mikke

        
Bezug
Periode, Zahlen n^n: Antwort
Status: (Antwort) fertig Status 
Datum: 19:23 Di 12.12.2006
Autor: otto.euler

Es genügt nur Endziffern zu betrachten.
Es ist [mm] 1^1, [/mm] 1^11, 1^21, usw stets = 1.
Es ist [mm] 2^2=4, 2^12\equiv6, 2^22\equiv4 [/mm] usw. Also hat die Periode vorerst einmal die Länge 20.
Es ist [mm] 3^3\equiv7, 3^13\equiv3, 3^23\equiv7 [/mm] usw. Periode bleibt bei 20.
Es ist [mm] 4^4\equiv6 [/mm] usw.
Es ist [mm] 5^5\equiv5 [/mm] usw.
Es ist [mm] 6^6\equiv6 [/mm] usw.
Es ist [mm] 7^7\equiv3, 7^17\equiv7, 7^27\equiv3 [/mm] usw.
Es ist [mm] 8^8\equiv6, 8^18\equiv2, 8^28\equiv4, 8^38\equiv8, 8^48\equiv6. [/mm] Periode also 40.
Es ist [mm] 9^9\equiv9 [/mm] usw.
Es ist [mm] 0^10\equiv0 [/mm] usw.

Diese Überlegungen legen nahe, dass [mm] n^n [/mm] periodisch mit Länge 40 ist.

Bezug
                
Bezug
Periode, Zahlen n^n: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 10:14 Mi 13.12.2006
Autor: Mikke

Okay ist mir jetzt doch alles so weit klar, aber wie kann ich zeigen dass das bei den einzelnen Zahlen 0,...,9 periodisch verläuft.
also zum beispiel [mm] 3^{3}\equiv7, 3^{13}\equiv3, 3^{23}\equiv7, 3^{33}\equiv3. [/mm]
und wieso ist bei den zahlen 1,...9 [mm] =a_{i}die [/mm] Endziffer von
[mm] a_{i}^{n} [/mm] gleich der endziffer von
[mm] (a_{i}+ [/mm] vielfaches von [mm] 10)^{n}. [/mm]
danke schon mal Mikke

Bezug
                        
Bezug
Periode, Zahlen n^n: Antwort
Status: (Antwort) fertig Status 
Datum: 17:49 Mi 13.12.2006
Autor: otto.euler

Schreibe n=10*m+e, wobei e die Endziffer von n sei.
Dann gilt:
[mm] n^n [/mm] = [mm] (10*m+e)^n [/mm] = [mm] \summe_{k=0}^{n}\vektor{n \\ k}*(10*m)^{k}*e^{n-k} [/mm] = [mm] e^n [/mm] + [mm] \summe_{k=1}^{n}\vektor{n \\ k}*(10*m)^{k}*e^{n-k} [/mm] = [mm] e^n [/mm] + [mm] 10*m*\summe_{k=1}^{n}\vektor{n \\ k}*(10*m)^{k-1}*e^{n-k} \equiv e^n [/mm] (mod 10)

Schreibe n=40*a+b, wobei [mm] 0\leb\le39 [/mm] gelte. Dann gilt:
[mm] n^n \equiv e^n [/mm] (mod 10), siehe oben.
[mm] e^n [/mm] = [mm] e^{40*a+b} \equiv e^b [/mm] (mod 10), nach gestriger Argumentation.

Insbesondere folgt:
[mm] (n+40)^{n+40} \equiv e^b \equiv n^n [/mm] (mod 10) für alle n,
denn n+40 = 10*(m+4)+e und n+40 = 40*(a+1)+b.



Bezug
        
Bezug
Periode, Zahlen n^n: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 00:56 Mi 13.12.2006
Autor: Mikke

Danke schon mal. Kannst du mir denn bitte noch einmal die genauen Zusammenhänge erklären, warum denn aus diesen Überlegungen "folgt" das [mm] n^n [/mm] periodisch ist und die periode 40 ist?
bis dann mikke

Bezug
                
Bezug
Periode, Zahlen n^n: Antwort
Status: (Antwort) fertig Status 
Datum: 11:09 Mi 13.12.2006
Autor: AgentLie

Die Periode ist wohl eher 20 und nicht 40. Das legt zumindest Ausporbieren mit Maple nah.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de