www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Kombinatorik" - Permutation
Permutation < Kombinatorik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Permutation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:47 Mo 29.10.2012
Autor: Fatih17

Aufgabe
Gegeben sei ein Quadrat mit den Ecken A,B,C und D. Auf jeder dieser Ecken kann eine der drei Marken
1,2 und 3 platziert werden. Wie groß ist die Anzahl dieser Permutationen?


Guten Abend liebe Gemeinde,

ich komme leider hier nicht so ganz klar mit der Aufgabe. Ich habe mich nun damit eine weile beschäftigt und bin leider immer durcheinander gekommen. Ich habe mir das nun als Menge vorgestellt:

Wir haben eine Menge mit 4 Elementen (Ecken). Nun können wir jedes Element rausnehmen (besetzen mit der Marke) und dabei auch direkt wieder zurücklegen (Es kann ja nur eine Ecke besetzt sein, müssen ja nicht alle drei sein, so habe ich das verstanden).

Somit komme ich auf folgende Rechnung:

[mm] \vektor{4+3-1 \\ 4} [/mm] = 20 Permutationen?

        
Bezug
Permutation: Antwort
Status: (Antwort) fertig Status 
Datum: 23:23 Mo 29.10.2012
Autor: teo

Hallo, du hast für die erste Münze vier Ecken zur Auswahl, für die zweite drei und für die dritte bleiben noch zwei. Du hast also wie viele Permutationen?

Bezug
                
Bezug
Permutation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:31 Mo 29.10.2012
Autor: Fatih17

Das wären 24 Permutationen, oder?

Bezug
                        
Bezug
Permutation: Antwort
Status: (Antwort) fertig Status 
Datum: 00:27 Di 30.10.2012
Autor: teo

Ja halt 4! Also 4 Fakultät, falls das nicht klar war.

Grüße

Bezug
                        
Bezug
Permutation: Antwort
Status: (Antwort) fertig Status 
Datum: 00:47 Di 30.10.2012
Autor: reverend

Hallo Fatih,

es hängt eben an der Deutung der Aufgabe.

Wenn nur eine Marke pro Ecke möglich ist, stimmt teos Rechnung: 24 Möglichkeiten.

Wenn auf einer Ecke auch mehrere Marken liegen können, sind es 64 Möglichkeiten.

(und übrigens: bei max. zwei Marken pro Ecke gibt es 60 Möglichkeiten).

Grüße
reverend


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de