www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Permutation signum
Permutation signum < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Permutation signum: Hilfe zu Aufgabe1
Status: (Frage) beantwortet Status 
Datum: 20:21 Do 11.09.2014
Autor: soulflow

Aufgabe
Die Ordnung einer zyklischen Permutation [mm]\varphi = (a_1 ... a_k)[/mm] ist k. Seien [mm] \sigma_1, ..., \sigma_b \in S_n ( n \ge 2, b \ge 1)[/mm] zyklische Permutationen mit den Ordnungen [mm] k_1, ..., k_b[/mm] und sei [mm] \sigma = \sigma_1 \circ ... \circ \sigma_b [/mm].

Leite eine Formel her, die sign([mm]\sigma[/mm]) mit Hilfe der Ordnungen [mm] k_1, ..., k_b[/mm] ausdrückt.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo,

sitze an dieser Aufgabe nun seit Stunden und weis echt nicht mehr weiter.  Mein Ansatz war, dass eine Permutation [mm]\sigma[/mm] der Ordnung b  in b-1 Transpositionen zerlegt werden kann. Also in die Form:

[mm]\sigma_b = (i_1 i_2) \circ ... \circ (i_{b-1} i_b)[/mm]
Für eine Transposition [mm] (i_1 i_2)[/mm] ist sign( [mm] (i_1 i_2)[/mm] ) = -1
Also für eine Permutation [mm]\sigma_b[/mm] der Ordnung b ist
sign([mm] \sigma_b [/mm]) = [mm](-1)^{b-1}[/mm]

Aber wie soll ich von hier aus weiter machen? Ich weiß ja nicht wie viel Permutationen [mm]\sigma[/mm] aus [mm]S_n[/mm] verkettet werden und welche Ordnungen diese im Einzelnen haben.  Hoffe mir kann jemand helfen, ohne gleich die Lösung zu verraten.

Vielen Dank im Vorraus.



        
Bezug
Permutation signum: Antwort
Status: (Antwort) fertig Status 
Datum: 22:26 Do 11.09.2014
Autor: hippias


> Die Ordnung einer zyklischen Permutation [mm]\varphi = (a_1 ... a_k)[/mm]
> ist k. Seien [mm]\sigma_1, ..., \sigma_b \in S_n ( n \ge 2, b \ge 1)[/mm]
> zyklische Permutationen mit den Ordnungen [mm]k_1, ..., k_b[/mm] und
> sei [mm]\sigma = \sigma_1 \circ ... \circ \sigma_b [/mm].
>  
> Leite eine Formel her, die sign([mm]\sigma[/mm]) mit Hilfe der
> Ordnungen [mm]k_1, ..., k_b[/mm] ausdrückt.
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Hallo,
>
> sitze an dieser Aufgabe nun seit Stunden und weis echt
> nicht mehr weiter.  Mein Ansatz war, dass eine Permutation
> [mm]\sigma[/mm] der Ordnung b  in b-1 Transpositionen zerlegt werden
> kann. Also in die Form:
>  
> [mm]\sigma_b = (i_1 i_2) \circ ... \circ (i_{b-1} i_b)[/mm]
>  Für
> eine Transposition [mm](i_1 i_2)[/mm] ist sign( [mm](i_1 i_2)[/mm] ) = -1
>  Also für eine Permutation [mm]\sigma_b[/mm] der Ordnung b ist
> sign([mm] \sigma_b [/mm]) = [mm](-1)^{b-1}[/mm]
>  
> Aber wie soll ich von hier aus weiter machen? Ich weiß ja
> nicht wie viel Permutationen [mm]\sigma[/mm] aus [mm]S_n[/mm] verkettet
> werden und welche Ordnungen diese im Einzelnen haben.  

Na eben doch: es sind $b$ Permutationen, die verkettet werden und die $i$-te hat die Ordnung [mm] $k_{i}$. [/mm] Also kannst Du auf jeden Faktor Deine obige richtige Ueberlegung anwenden. Beachte fuer das Signum von [mm] $\sigma$, [/mm] dass die Signumfunktion ein Homomorphismus ist.

> Hoffe mir kann jemand helfen, ohne gleich die Lösung zu
> verraten.
>  
> Vielen Dank im Vorraus.
>
>  


Bezug
                
Bezug
Permutation signum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 07:45 Fr 12.09.2014
Autor: soulflow

Vielen Dank für deine Antwort. Das die Signumfunktion ein Homomorphismus, habe ich völlig außer acht gelassen.
Davon ausgehend wäre sign([mm]\sigma [/mm]) = sign([mm] \sigma_1[/mm])* ...* sign([mm]\sigma_b[/mm])
Also : sign([mm]\sigma [/mm]) = [mm](-1)^{k_1 -1} * ... * (-1)^{k_b -1}[/mm]
Daraus folgt :sign([mm] \sigma[/mm]) [mm]= [/mm][mm] \produkt_{i=1}^{b} (-1)^{k_i -1}[/mm]

Stimmt das so ?

Bezug
                        
Bezug
Permutation signum: Antwort
Status: (Antwort) fertig Status 
Datum: 08:12 Fr 12.09.2014
Autor: hippias

Sieht gut aus. Man koennte noch genauer untersuchen, wann das Signum $=1$ ist: [mm] $sgn(\sigma)=1\iff$ [/mm] $b$ und [mm] $k_{i}$ $\ldots$. [/mm]

Bezug
                                
Bezug
Permutation signum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:35 Fr 12.09.2014
Autor: soulflow

Vielen Dank für dein Hilfe! Ich habe eine weitere Aufgabe bei der ich nicht weiß, wie Anfangen soll. Kann ich die hier schreiben oder soll ich eine neue Diskussion öffnen?

Bezug
                                        
Bezug
Permutation signum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:59 Fr 12.09.2014
Autor: Valerie20


> Vielen Dank für dein Hilfe! Ich habe eine weitere Aufgabe
> bei der ich nicht weiß, wie Anfangen soll. Kann ich die
> hier schreiben oder soll ich eine neue Diskussion öffnen?

Beginne einen neuen Strang für die neue Aufgabe. Ansonten wird das unübersichtlich.

Valerie

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de