www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Permutationen
Permutationen < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Permutationen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:53 Di 04.05.2010
Autor: MontBlanc

Aufgabe
Wieviele Untergruppen der Größe 3 gibt es in der symmetrischen Gruppe [mm] S_5. [/mm]

Gibt es eine nicht-zyklische Untergruppe mit Größe 4 in [mm] S_5 [/mm]

Hi,

für die erste Frage war es denke ich am sinnvollsten die verschiedenen Zyklen aufzuschreiben, die entscheidenden sind hier alle mit Länge 3 und dann jeweils 2 mal Länge 1. Da 3 prim ist und damit alle Untergruppen der Größe 3 zyklisch sind, ist 3 auch deren Ordnung. Finden muss ich also alle zyklischen Untergruppen mit größe 3.

So demnach sollte jede der besagten Untergruppen die Identität sowie 2 Elemente mit Ordnung 3 aufweisen. Die Anzahl an 3-Zyklen ist [mm] \vektor{5 \\ 3}*2 [/mm] . Jetzt kommt der Teil den ich nicht verstehe, und zwar, wieso muss ich die Anzahl der 3-Zyklen jetzt noch mit [mm] \bruch{1}{2} [/mm] multiplizieren um auf die Anzahl der Gruppen zu kommen ? Ich kann es mir einfach nicht anschaulich klar machen. Hat es etwas damit zu tun, dass die Identität in jeder Gruppe sein muss ?

Bei der letzten Frage läuft es mMn auf probieren hinaus, geht es vielleicht auch etwas eleganter ?

lg

        
Bezug
Permutationen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:00 Di 04.05.2010
Autor: Arcesius

Hallo

> Wieviele Untergruppen der Größe 3 gibt es in der
> symmetrischen Gruppe [mm]S_5.[/mm]
>  
> Gibt es eine nicht-zyklische Untergruppe mit Größe 4 in
> [mm]S_5[/mm]
>  Hi,
>  
> für die erste Frage war es denke ich am sinnvollsten die
> verschiedenen Zyklen aufzuschreiben, die entscheidenden
> sind hier alle mit Länge 3 und dann jeweils 2 mal Länge
> 1. Da 3 prim ist und damit alle Untergruppen der Größe 3
> zyklisch sind, ist 3 auch deren Ordnung. Finden muss ich
> also alle zyklischen Untergruppen mit größe 3.
>  

Nur so als Zwischenfrage.. hatter ihr die Sylowsätze schon?

> So demnach sollte jede der besagten Untergruppen die
> Identität sowie 2 Elemente mit Ordnung 3 aufweisen. Die

Gut, das ist richtig.

> Anzahl an 3-Zyklen ist [mm]\vektor{5 \\ 3}*2[/mm] . Jetzt kommt der
> Teil den ich nicht verstehe, und zwar, wieso muss ich die
> Anzahl der 3-Zyklen jetzt noch mit [mm]\bruch{1}{2}[/mm]
> multiplizieren um auf die Anzahl der Gruppen zu kommen ?
> Ich kann es mir einfach nicht anschaulich klar machen. Hat
> es etwas damit zu tun, dass die Identität in jeder Gruppe
> sein muss ?

Ne, mit der Identität hat es nichts zu tun. Aber du hast es ja schon selbst erwähnt! Jede Untergruppe der Ordnung 3 muss ZWEI Elemente der Ordnung 3 beinhalten.. somit, wenn du n 3er Zykel hast, dann haste n/2 Untergruppen der Ordnung 3.

>  
> Bei der letzten Frage läuft es mMn auf probieren hinaus,
> geht es vielleicht auch etwas eleganter ?

Jops.. Überlege dir, was für Elemente eine solche Untergruppe beinhalten kann und überprüfe dann, von wievielen Elementen diese Untergruppen jeweils erzeugt werden.

>  
> lg

Grüsse, Amaro

Bezug
                
Bezug
Permutationen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:34 Di 04.05.2010
Autor: MontBlanc

Hallo,

danke für deine antwort! Hat mir weitergeholfen! Nein, wir hatten die Sylow-Sätze noch nicht.

Lg

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de